On certain relations between the maximum modulus and the maximal term of an entire dirichlet series

1999 ◽  
Vol 66 (2) ◽  
pp. 223-232 ◽  
Author(s):  
O. B. Skaskiv

2015 ◽  
Vol 7 (2) ◽  
pp. 172-187 ◽  
Author(s):  
T.Ya. Hlova ◽  
P.V. Filevych

Let $A\in(-\infty,+\infty]$ and $\Phi$ be a continuously on $[\sigma_0,A)$ function such that $\Phi(\sigma)\to+\infty$ as $\sigma\to A-0$. We establish a necessary and sufficient condition on a nonnegative sequence $\lambda=(\lambda_n)$, increasing to $+\infty$, under which the equality$$\overline{\lim\limits_{\sigma\uparrow A}}\frac{\ln M(\sigma,F)}{\Phi(\sigma)}=\overline{\lim\limits_{\sigma\uparrow A}}\frac{\ln\mu(\sigma,F)}{\Phi(\sigma)},$$holds for every Dirichlet series of the form $F(s)=\sum_{n=0}^\infty a_ne^{s\lambda_n}$, $s=\sigma+it$, absolutely convergent in the half-plane ${Re}\, s<A$, where $M(\sigma,F)=\sup\{|F(s)|:{Re}\, s=\sigma\}$ and $\mu(\sigma,F)=\max\{|a_n|e^{\sigma\lambda_n}:n\ge 0\}$ are the maximum modulus and maximal term of this series respectively.







2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yong-Qin Cui ◽  
Hong-Yan Xu ◽  
Na Li

The main purpose of this paper is to investigate the growth of several entire functions represented by double Dirichlet series of finite logarithmic order, h-order. Besides, we also study some properties on the maximum modulus of double Dirichlet series and its partial derivative. Our results are extension and improvement of previous results given by Huo and Liang.



2005 ◽  
Vol 57 (4) ◽  
pp. 686-693
Author(s):  
O. B. Skaskiv ◽  
O. M. Trakalo


Sign in / Sign up

Export Citation Format

Share Document