Decomposition of vector-valued additive functions

1992 ◽  
Vol 61 (1) ◽  
pp. 1926-1930
Author(s):  
V. N. Sudakov
1977 ◽  
Vol 29 (2) ◽  
pp. 295-298 ◽  
Author(s):  
Thomas P. Dence

Our aim is to establish the Lebesgue decomposition for s-bounded vector valued additive functions defined on lattices of sets in both the finitely and countably additive setting. Strongly bounded (s-bounded) set functions were first studied by Rickart [15], and then by Rao [14], Brooks [1] and Darst [5; 6]. In 1963 Darst [6] established a result giving the decomposition of s-bounded elements in a normed Abelian group with respect to an algebra of projection operators.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3237-3243
Author(s):  
In Hwang ◽  
In Kim ◽  
Sumin Kim

In this note we give a connection between the closure of the range of block Hankel operators acting on the vector-valued Hardy space H2Cn and the left coprime factorization of its symbol. Given a subset F ? H2Cn, we also consider the smallest invariant subspace S*F of the backward shift S* that contains F.


2020 ◽  
pp. 1-13
Author(s):  
SEBASTIÁN PAVEZ-MOLINA

Abstract Let $(X,T)$ be a topological dynamical system. Given a continuous vector-valued function $F \in C(X, \mathbb {R}^{d})$ called a potential, we define its rotation set $R(F)$ as the set of integrals of F with respect to all T-invariant probability measures, which is a convex body of $\mathbb {R}^{d}$ . In this paper we study the geometry of rotation sets. We prove that if T is a non-uniquely ergodic topological dynamical system with a dense set of periodic measures, then the map $R(\cdot )$ is open with respect to the uniform topologies. As a consequence, we obtain that the rotation set of a generic potential is strictly convex and has $C^{1}$ boundary. Furthermore, we prove that the map $R(\cdot )$ is surjective, extending a result of Kucherenko and Wolf.


Sign in / Sign up

Export Citation Format

Share Document