A Lebesgue Decomposition for Vector Valued Additive Set Functions Defined on a Lattice

1977 ◽  
Vol 29 (2) ◽  
pp. 295-298 ◽  
Author(s):  
Thomas P. Dence

Our aim is to establish the Lebesgue decomposition for s-bounded vector valued additive functions defined on lattices of sets in both the finitely and countably additive setting. Strongly bounded (s-bounded) set functions were first studied by Rickart [15], and then by Rao [14], Brooks [1] and Darst [5; 6]. In 1963 Darst [6] established a result giving the decomposition of s-bounded elements in a normed Abelian group with respect to an algebra of projection operators.


1980 ◽  
Vol 3 (4) ◽  
pp. 801-808
Author(s):  
Thomas P. Dence

Our aim is to establish the Lebesgue decomposition for strongly-bounded elements in a topological group. In 1963 Richard Darst established a result giving the Lebesgue decomposition of strongly-bounded elements in a normed Abelian group with respect to an algebra of projection operators. Consequently, one can establish the decomposition of strongly-bounded additive functions defined on an algebra of sets. Analagous results follow for lattices of sets. Generalizing some of the techniques yield decompositions for elements in a topological group.









1991 ◽  
Vol 21 (11-12) ◽  
pp. 165-175 ◽  
Author(s):  
Lai-Jiu Lin


1992 ◽  
Vol 61 (1) ◽  
pp. 1926-1930
Author(s):  
V. N. Sudakov


2018 ◽  
Vol 68 (2) ◽  
pp. 397-404 ◽  
Author(s):  
Ahmed Charifi ◽  
Radosław Łukasik ◽  
Driss Zeglami

Abstract We obtain in terms of additive and multi-additive functions the solutions f, h: S → H of the functional equation $$\begin{array}{} \displaystyle \sum\limits_{\lambda \in \Phi }f(x+\lambda y+a_{\lambda })=Nf(x)+h(y),\quad x,y\in S, \end{array} $$ where (S, +) is an abelian monoid, Φ is a finite group of automorphisms of S, N = | Φ | designates the number of its elements, {aλ, λ ∈ Φ} are arbitrary elements of S and (H, +) is an abelian group. In addition, some applications are given. This equation provides a joint generalization of many functional equations such as Cauchy’s, Jensen’s, Łukasik’s, quadratic or Φ-quadratic equations.



2013 ◽  
Vol 03 (08) ◽  
pp. 653-659 ◽  
Author(s):  
Mangatiana A. Robdera ◽  
Dintle Kagiso
Keyword(s):  


2012 ◽  
Vol 85 (2) ◽  
pp. 202-216 ◽  
Author(s):  
BARBARA PRZEBIERACZ

AbstractWe investigate the Pexider-type functional equation where f, g, h are real functions defined on an abelian group G. We solve this equation under the assumptions G=ℝ and f is continuous.



Sign in / Sign up

Export Citation Format

Share Document