An application of the method of Dirichlet generating series in the theory of distribution of values of arithmetic functions

1974 ◽  
Vol 14 (1) ◽  
pp. 72-82 ◽  
Author(s):  
E. Manstavičius

1971 ◽  
Vol 11 (1) ◽  
pp. 125-134
Author(s):  
J. Kubilius

The abstracts (in two languages) can be found in the pdf file of the article. Original author name(s) and title in Russian and Lithuanian: И. Кубилюс. Метод производящих рядов Дирихле в теории распределения аддитивных арифметических функций. I J. Kubilius. Generuojančių Dirichlė eilučių metodas adityvinių aritmetinių funkcijų pasiskirstymo teorijose. I





1972 ◽  
Vol 12 (2) ◽  
pp. 65-76
Author(s):  
J. Kubilius

The abstracts (in two languages) can be found in the pdf file of the article. Original author name(s) and title in Russian and Lithuanian: И. Кубилюс. Метод производящих рядов Дирихле в теории распределения аддитивных арифметических функций. II J. Kubilius. Generuojančių Dirichlė eilučių metodas adityvinių aritmetinių funkcijų pasiskirstymo teorijoje. II



2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Jan-Willem M. van Ittersum

AbstractThe algebra of so-called shifted symmetric functions on partitions has the property that for all elements a certain generating series, called the q-bracket, is a quasimodular form. More generally, if a graded algebra A of functions on partitions has the property that the q-bracket of every element is a quasimodular form of the same weight, we call A a quasimodular algebra. We introduce a new quasimodular algebra $$\mathcal {T}$$ T consisting of symmetric polynomials in the part sizes and multiplicities.



Author(s):  
Bernhard Heim ◽  
Markus Neuhauser

AbstractIn this paper we investigate growth properties and the zero distribution of polynomials attached to arithmetic functions g and h, where g is normalized, of moderate growth, and $$0<h(n) \le h(n+1)$$ 0 < h ( n ) ≤ h ( n + 1 ) . We put $$P_0^{g,h}(x)=1$$ P 0 g , h ( x ) = 1 and $$\begin{aligned} P_n^{g,h}(x) := \frac{x}{h(n)} \sum _{k=1}^{n} g(k) \, P_{n-k}^{g,h}(x). \end{aligned}$$ P n g , h ( x ) : = x h ( n ) ∑ k = 1 n g ( k ) P n - k g , h ( x ) . As an application we obtain the best known result on the domain of the non-vanishing of the Fourier coefficients of powers of the Dedekind $$\eta $$ η -function. Here, g is the sum of divisors and h the identity function. Kostant’s result on the representation of simple complex Lie algebras and Han’s results on the Nekrasov–Okounkov hook length formula are extended. The polynomials are related to reciprocals of Eisenstein series, Klein’s j-invariant, and Chebyshev polynomials of the second kind.



Sign in / Sign up

Export Citation Format

Share Document