Dual spaces of stresses and strains, with applications to Hencky plasticity

1983 ◽  
Vol 10 (1) ◽  
pp. 1-35 ◽  
Author(s):  
Robert Kohn ◽  
Roger Temam
Keyword(s):  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wesley Fussner ◽  
Mai Gehrke ◽  
Samuel J. van Gool ◽  
Vincenzo Marra

Abstract We provide a new perspective on extended Priestley duality for a large class of distributive lattices equipped with binary double quasioperators. Under this approach, non-lattice binary operations are each presented as a pair of partial binary operations on dual spaces. In this enriched environment, equational conditions on the algebraic side of the duality may more often be rendered as first-order conditions on dual spaces. In particular, we specialize our general results to the variety of MV-algebras, obtaining a duality for these in which the equations axiomatizing MV-algebras are dualized as first-order conditions.


Author(s):  
Angela A. Albanese ◽  
Claudio Mele

AbstractIn this paper we continue the study of the spaces $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) and $${\mathcal O}_{C,\omega }({\mathbb R}^N)$$ O C , ω ( R N ) undertaken in Albanese and Mele (J Pseudo-Differ Oper Appl, 2021). We determine new representations of such spaces and we give some structure theorems for their dual spaces. Furthermore, we show that $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) is the space of convolutors of the space $${\mathcal S}_\omega ({\mathbb R}^N)$$ S ω ( R N ) of the $$\omega $$ ω -ultradifferentiable rapidly decreasing functions of Beurling type (in the sense of Braun, Meise and Taylor) and of its dual space $${\mathcal S}'_\omega ({\mathbb R}^N)$$ S ω ′ ( R N ) . We also establish that the Fourier transform is an isomorphism from $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) onto $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) . In particular, we prove that this isomorphism is topological when the former space is endowed with the strong operator lc-topology induced by $${\mathcal L}_b({\mathcal S}_\omega ({\mathbb R}^N))$$ L b ( S ω ( R N ) ) and the last space is endowed with its natural lc-topology.


1984 ◽  
Vol 106 (3) ◽  
pp. 125-129 ◽  
Author(s):  
C.P. Boyer ◽  
J.F. Plebański

1991 ◽  
Vol 208 (1) ◽  
pp. 327-334 ◽  
Author(s):  
L. J. Bunce ◽  
C. -H. Chu
Keyword(s):  

2021 ◽  
Vol 13 (4) ◽  
pp. 112-122
Author(s):  
Rinad Salavatovich Yulmukhametov

2016 ◽  
Vol 101 (1) ◽  
pp. 95-117
Author(s):  
A. MUĆKA ◽  
A. B. ROMANOWSKA

In an earlier paper, Romanowska, Ślusarski and Smith described a duality between the category of polytopes (finitely generated real convex sets considered as barycentric algebras) and a certain category of intersections of hypercubes, considered as barycentric algebras with additional constant operations. The present paper provides an extension of this duality to a much more general class of so-called quasipolytopes, that is, convex sets with polytopes as closures. The dual spaces of quasipolytopes are Płonka sums of open polytopes, which are considered as barycentric algebras with some additional operations. In constructing this duality, we use several known and new dualities: the Hofmann–Mislove–Stralka duality for semilattices; the Romanowska–Ślusarski–Smith duality for polytopes; a new duality for open polytopes; and a new duality for injective Płonka sums of polytopes.


2012 ◽  
Vol 285 (17-18) ◽  
pp. 2078-2092 ◽  
Author(s):  
Shai Dekel ◽  
Tal Weissblat
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document