The moments of spectral distribution functions for the distances between adjacent eigenvalues of random matrices

1994 ◽  
Vol 68 (6) ◽  
pp. 805-809
Author(s):  
V. L. Girko ◽  
O. G. Chaika
2017 ◽  
Vol 06 (03) ◽  
pp. 1750011
Author(s):  
Debapratim Banerjee ◽  
Arup Bose

We consider four specific [Formula: see text] sparse patterned random matrices, namely the Symmetric Circulant, Reverse Circulant, Toeplitz and the Hankel matrices. The entries are assumed to be Bernoulli with success probability [Formula: see text] such that [Formula: see text] with [Formula: see text]. We use the moment approach to show that the expected empirical spectral distribution (EESD) converges weakly for all these sparse matrices. Unlike the Sparse Wigner matrices, here the random empirical spectral distribution (ESD) converges weakly to a random distribution. This weak convergence is only in the distribution sense. We give explicit description of the random limits of the ESD for Reverse Circulant and Circulant matrices. As in the non-sparse case, explicit description of the limits appears to be difficult to obtain in the Toeplitz and Hankel cases. We provide some properties of these limits. We then study the behavior of the largest eigenvalue of these matrices. We prove that for the Reverse Circulant and Symmetric Circulant matrices the limit distribution of the largest eigenvalue is a multiple of the Poisson. For Toeplitz and Hankel matrices we show that the non-degenerate limit distribution exists, but again it does not seem to be easy to obtain any explicit description.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 638
Author(s):  
Xianjie Gao ◽  
Chao Zhang ◽  
Hongwei Zhang

Random matrices have played an important role in many fields including machine learning, quantum information theory, and optimization. One of the main research focuses is on the deviation inequalities for eigenvalues of random matrices. Although there are intensive studies on the large-deviation inequalities for random matrices, only a few works discuss the small-deviation behavior of random matrices. In this paper, we present the small-deviation inequalities for the largest eigenvalues of sums of random matrices. Since the resulting inequalities are independent of the matrix dimension, they are applicable to high-dimensional and even the infinite-dimensional cases.


Sign in / Sign up

Export Citation Format

Share Document