scholarly journals Small-Deviation Inequalities for Sums of Random Matrices

Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 638
Author(s):  
Xianjie Gao ◽  
Chao Zhang ◽  
Hongwei Zhang

Random matrices have played an important role in many fields including machine learning, quantum information theory, and optimization. One of the main research focuses is on the deviation inequalities for eigenvalues of random matrices. Although there are intensive studies on the large-deviation inequalities for random matrices, only a few works discuss the small-deviation behavior of random matrices. In this paper, we present the small-deviation inequalities for the largest eigenvalues of sums of random matrices. Since the resulting inequalities are independent of the matrix dimension, they are applicable to high-dimensional and even the infinite-dimensional cases.

2019 ◽  
Vol 27 (3) ◽  
pp. 167-175
Author(s):  
Vyacheslav L. Girko

Abstract The lower bounds for the minimal singular eigenvalue of the matrix whose entries have zero means and bounded variances are obtained. The new method is based on the G-method of perpendiculars and the RESPECT method.


2018 ◽  
Vol 26 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Vyacheslav L. Girko

Abstract The lower bounds for the minimal singular eigenvalue of the matrix are obtained under the G-Lindeberg condition and the G-double stochastic condition for the variances of the matrix entries. The new method is based on the G-method of perpendiculars, the REFORM method, the martingale method, and the theory of canonical spectral equations.


2019 ◽  
Vol 09 (04) ◽  
pp. 2050012 ◽  
Author(s):  
Włodek Bryc ◽  
Jack W. Silverstein

We study largest singular values of large random matrices, each with mean of a fixed rank [Formula: see text]. Our main result is a limit theorem as the number of rows and columns approach infinity, while their ratio approaches a positive constant. It provides a decomposition of the largest [Formula: see text] singular values into the deterministic rate of growth, random centered fluctuations given as explicit linear combinations of the entries of the matrix, and a term negligible in probability. We use this representation to establish asymptotic normality of the largest singular values for random matrices with means that have block structure. We also deduce asymptotic normality for the largest eigenvalues of a random matrix arising in a model of population genetics.


Author(s):  
Никита Сергеевич Олейник ◽  
Владислав Юрьевич Щеколдин

Рассмотрена задача выявления аномальных наблюдений в данных больших размерностей на основе метода многомерного шкалирования с учетом возможности построения качественной визуализации данных. Предложен алгоритм модифицированного метода главных проекций Торгерсона, основанный на построении подпространства проектирования исходных данных путем изменения способа факторизации матрицы скалярных произведений при помощи метода анализа кумулятивных кривых. Построено и проанализировано эмпирическое распределение F -меры для разных вариантов проектирования исходных данных Purpose. Purpose of the article. The paper aims at the development of methods for multidimensional data presentation for solving classification problems based on the cumulative curves analysis. The paper considers the outlier detection problem for high-dimensional data based on the multidimensional scaling, in order to construct high-quality data visualization. An abnormal observation (or outlier), according to D. Hawkins, is an observation that is so different from others that it may be assumed as appeared in the sample in a fundamentally different way. Methods. One of the conceptual approaches that allow providing the classification of sample observations is multidimensional scaling, representing by the classical Orlochi method, the Torgerson main projections and others. The Torgerson method assumes that when converting data to construct the most convenient classification, the origin must be placed at the gravity center of the analyzed data, after which the matrix of scalar products of vectors with the origin at the gravity center is calculated, the two largest eigenvalues and corresponding eigenvectors are chosen and projection matrix is evaluated. Moreover, the method assumes the linear partitioning of regular and anomalous observations, which arises rarely. Therefore, it is logical to choose among the possible axes for designing those that allow obtaining more effective results for solving the problem of detecting outlier observations. A procedure of modified CC-ABOD (Cumulative Curves for Angle Based Outlier Detection) to estimate the visualization quality has been applied. It is based on the estimation of the variances of angles assumed by particular observation and remaining observations in multidimensional space. Further the cumulative curves analysis is implemented, which allows partitioning out groups of closely localized observations (in accordance with the chosen metric) and form classes of regular, intermediate, and anomalous observations. Results. A proposed modification of the Torgerson method is developed. The F1-measure distribution is constructed and analyzed for different design options in the source data. An analysis of the empirical distribution showed that in a number of cases the best axes are corresponding to the second, third, or even fourth largest eigenvalues. Findings. The multidimensional scaling methods for constructing visualizations of multi-dimensional data and solving problems of outlier detection have been considered. It was found out that the determination of design is an ambiguous problem.


Author(s):  
Mihai Popa ◽  
Zhiwei Hao

Motivated by the recent work on asymptotic independence relations for random matrices with non-commutative entries, we investigate the limit distribution and independence relations for large matrices with identically distributed and Boolean independent entries. More precisely, we show that, under some moment conditions, such random matrices are asymptotically [Formula: see text]-diagonal and Boolean independent from each other. This paper also gives a combinatorial condition under which such matrices are asymptotically Boolean independent from the matrix obtained by permuting the entries (thus extending a recent result in Boolean probability). In particular, we show that the random matrices considered are asymptotically Boolean independent from some of their partial transposes. The main results of the paper are based on combinatorial techniques.


2013 ◽  
Vol 726 ◽  
pp. 1-4 ◽  
Author(s):  
Predrag Cvitanović

AbstractThe understanding of chaotic dynamics in high-dimensional systems that has emerged in the last decade offers a promising dynamical framework to study turbulence. Here turbulence is viewed as a walk through a forest of exact solutions in the infinite-dimensional state space of the governing equations. Recently, Chandler & Kerswell (J. Fluid Mech., vol. 722, 2013, pp. 554–595) carry out the most exhaustive study of this programme undertaken so far in fluid dynamics, a feat that requires every tool in the dynamicist’s toolbox: numerical searches for recurrent flows, computation of their stability, their symmetry classification, and estimating from these solutions statistical averages over the turbulent flow. In the long run this research promises to develop a quantitative, predictive description of moderate-Reynolds-number turbulence, and to use this description to control flows and explain their statistics.


Sign in / Sign up

Export Citation Format

Share Document