On the number of limit cycles in perturbations of a two dimensional nonlinear differential system

1996 ◽  
Vol 52 (1) ◽  
pp. 319-319
Author(s):  
Josef Hainzl
2021 ◽  
Vol 3 (1) ◽  
pp. 13-34
Author(s):  
Robert J Marks II

Continually expanding periodically translated kernels on the two dimensional grid can yield interesting, beau- tiful and even familiar patterns. For example, expand- ing circular pillbox shaped kernels on a hexagonal grid, adding when there is overlap, yields patterns includ- ing maximally packed circles and a triquetra-type three petal structure used to represent the trinity in Chris- tianity. Continued expansion yields the flower-of-life used extensively in art and architecture. Additional expansion yields an even more interesting emerging ef- florescence of periodic functions. Example images are given for the case of circular pillbox and circular cone shaped kernels. Using Fourier analysis, fundamental properties of these patterns are analyzed. As a func- tion of expansion, some effloresced functions asymp- totically approach fixed points or limit cycles. Most interesting is the case where the efflorescence never repeats. Video links are provided for viewing efflores- cence in real time.


Author(s):  
T. R. Blows ◽  
N. G. Lloyd

SynopsisTwo-dimensional differential systemsare considered, where P and Q are polynomials. The question of interest is the maximum possible numberof limit cycles of such systems in terms of the degree of P and Q. An algorithm is described for determining a so-called focal basis; this can be implemented on a computer. Estimates can then be obtained for the number of small-amplitude limit cycles. The technique is applied to certain cubic systems; a class of examples with exactly five small-amplitude limit cycles is constructed. Quadratic systems are also considered.


2011 ◽  
Vol 21 (10) ◽  
pp. 3043-3046 ◽  
Author(s):  
SERGEY STEPANOV

A two-mass oscillator with one mass lying on the driving belt with dry Coulomb friction is considered. A numerical method for finding all limit cycles and their parametric investigation, based on the analysis of fixed points of a two-dimensional map, is suggested. As successive points for the map we chose points of friction transferred from stick mode to slip mode. These transfers are defined by two equalities and yield a two-dimensional map, in contrast to three-dimensional maps that we can construct for regularized continuous dry friction laws.


2018 ◽  
Vol 28 (07) ◽  
pp. 1850085 ◽  
Author(s):  
Zhouchao Wei ◽  
Viet-Thanh Pham ◽  
Abdul Jalil M. Khalaf ◽  
Jacques Kengne ◽  
Sajad Jafari

In this paper, by modifying a known two-dimensional oscillator, we obtain an interesting new oscillator with coexisting limit cycles and point attractors. Then by changing this new system to its forced version and choosing a proper set of parameters, we introduce a chaotic system with some very interesting features. In this system, not only can we see the coexistence of different types of attractors, but also a fascinating phenomenon: some initial conditions can escape from the gravity of nearby attractors and travel far away before being trapped in an attractor beyond the usual access.


Sign in / Sign up

Export Citation Format

Share Document