scholarly journals A quintic polynomial differential system with eleven limit cycles at the infinity

2007 ◽  
Vol 53 (10) ◽  
pp. 1518-1526 ◽  
Author(s):  
Qi Zhang ◽  
Yirong Liu
Author(s):  
Jaume Llibre ◽  
Xiang Zhang

AbstractWe provide sufficient conditions for the non-existence, existence and uniqueness of limit cycles surrounding a focus of a quadratic polynomial differential system in the plane.


2015 ◽  
Vol 25 (10) ◽  
pp. 1550131 ◽  
Author(s):  
Fangfang Jiang ◽  
Junping Shi ◽  
Jitao Sun

In this paper, we investigate the number of limit cycles for a class of discontinuous planar differential systems with multiple sectors separated by many rays originating from the origin. In each sector, it is a smooth generalized Liénard polynomial differential system x′ = -y + g1(x) + f1(x)y and y′ = x + g2(x) + f2(x)y, where fi(x) and gi(x) for i = 1, 2 are polynomials of variable x with any given degree. By the averaging theory of first-order for discontinuous differential systems, we provide the criteria on the maximum number of medium amplitude limit cycles for the discontinuous generalized Liénard polynomial differential systems. The upper bound for the number of medium amplitude limit cycles can be attained by specific examples.


2016 ◽  
Vol 26 (05) ◽  
pp. 1650083 ◽  
Author(s):  
Regilene Oliveira ◽  
Claudia Valls

A chaotic system with only one equilibrium, a stable node-focus, was introduced by Wang and Chen [2012]. This system was found by adding a nonzero constant [Formula: see text] to the Sprott E system [Sprott, 1994]. The coexistence of three types of attractors in this autonomous system was also considered by Braga and Mello [2013]. Adding a second parameter to the Sprott E differential system, we get the autonomous system [Formula: see text] where [Formula: see text] are parameters and [Formula: see text]. In this paper, we consider theoretically some global dynamical aspects of this system called here the generalized Sprott E differential system. This polynomial differential system is relevant because it is the first polynomial differential system in [Formula: see text] with two parameters exhibiting, besides the point attractor and chaotic attractor, coexisting stable limit cycles, demonstrating that this system is truly complicated and interesting. More precisely, we show that for [Formula: see text] sufficiently small this system can exhibit two limit cycles emerging from the classical Hopf bifurcation at the equilibrium point [Formula: see text]. We also give a complete description of its dynamics on the Poincaré sphere at infinity by using the Poincaré compactification of a polynomial vector field in [Formula: see text], and we show that it has no first integrals in the class of Darboux functions.


Sign in / Sign up

Export Citation Format

Share Document