Extremal Kähler metrics and complex deformation theory

1994 ◽  
Vol 4 (3) ◽  
pp. 298-336 ◽  
Author(s):  
C. LeBrun ◽  
S. R. Simanca
2001 ◽  
Vol 162 ◽  
pp. 41-63 ◽  
Author(s):  
Toshiki Mabuchi

Associated with a Hamiltonian holomorphic vector field on a compact Kähler manifold, a nice functional on a space of Kähler metrics will be constructed as an integration of the bilinear pairing in [FM] contracted with the Hamiltonian holomorphic vector field. As applications, we have functionals whose critical points are extremal Kähler metrics or “Kähler-Einstein metrics” in the sense of [M4], respectively. Finally, the same method as used by [G1] allows us to obtain, from the convexity of , the uniqueness of “Kähler-Einstein metrics” on nonsingular toric Fano varieties possibly with nonvanishing Futaki character.


Sign in / Sign up

Export Citation Format

Share Document