kahler metrics
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 45)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Vicente Cortés ◽  
Iván Tulli

AbstractWe construct a quaternionic Kähler manifold from a conical special Kähler manifold with a certain type of mutually local variation of BPS structures. We give global and local explicit formulas for the quaternionic Kähler metric and specify under which conditions it is positive-definite. Locally, the metric is a deformation of the 1-loop corrected Ferrara–Sabharwal metric obtained via the supergravity c-map. The type of quaternionic Kähler metrics we obtain is related to work in the physics literature by S. Alexandrov and S. Banerjee, where they discuss the hypermultiplet moduli space metric of type IIA string theory, with mutually local D-instanton corrections.


Author(s):  
Maciej Dunajski

AbstractWe construct the normal forms of null-Kähler metrics: pseudo-Riemannian metrics admitting a compatible parallel nilpotent endomorphism of the tangent bundle. Such metrics are examples of non-Riemannian holonomy reduction, and (in the complexified setting) appear on the space of Bridgeland stability conditions on a Calabi–Yau threefold. Using twistor methods we show that, in dimension four—where there is a connection with dispersionless integrability—the cohomogeneity-one anti-self-dual null-Kähler metrics are generically characterised by solutions to Painlevé I or Painlevé II ODEs.


2021 ◽  
Author(s):  
Sahil Gehlawat ◽  
Kaushal Verma

2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Massimo Bianchi ◽  
Ugo Bruzzo ◽  
Pietro Fré ◽  
Dario Martelli

AbstractIn this paper, we analyze the relevance of the generalized Kronheimer construction for the gauge/gravity correspondence. We begin with the general structure of D3-brane solutions of type IIB supergravity on smooth manifolds $$Y^\Gamma $$ Y Γ that are supposed to be the crepant resolution of quotient singularities $$\mathbb {C}^3/\Gamma $$ C 3 / Γ with $$\Gamma $$ Γ a finite subgroup of SU(3). We emphasize that nontrivial 3-form fluxes require the existence of imaginary self-dual harmonic forms $$\omega ^{2,1}$$ ω 2 , 1 . Although excluded in the classical Kronheimer construction, they may be reintroduced by means of mass deformations. Next we concentrate on the other essential item for the D3-brane construction, namely, the existence of a Ricci-flat metric on $$Y^\Gamma $$ Y Γ . We study the issue of Ricci-flat Kähler metrics on such resolutions $$Y^\Gamma $$ Y Γ , with particular attention to the case $$\Gamma =\mathbb {Z}_4$$ Γ = Z 4 . We advance the conjecture that on the exceptional divisor of $$Y^\Gamma $$ Y Γ the Kronheimer Kähler metric and the Ricci-flat one, that is locally flat at infinity, coincide. The conjecture is shown to be true in the case of the Ricci-flat metric on $$\mathrm{tot} K_{{\mathbb {W}P}[112]}$$ tot K W P [ 112 ] that we construct, i.e., the total space of the canonical bundle of the weighted projective space $${\mathbb {W}P}[112]$$ W P [ 112 ] , which is a partial resolution of $$\mathbb {C}^3/\mathbb {Z}_4$$ C 3 / Z 4 . For the full resolution, we have $$Y^{\mathbb {Z}_4}={\text {tot}} K_{\mathbb {F}_{2}}$$ Y Z 4 = tot K F 2 , where $$\mathbb {F}_2$$ F 2 is the second Hirzebruch surface. We try to extend the proof of the conjecture to this case using the one-parameter Kähler metric on $$\mathbb {F}_2$$ F 2 produced by the Kronheimer construction as initial datum in a Monge–Ampère (MA) equation. We exhibit three formulations of this MA equation, one in terms of the Kähler potential, the other two in terms of the symplectic potential but with two different choices of the variables. In both cases, one can establish a series solution in powers of the variable along the fibers of the canonical bundle. The main property of the MA equation is that it does not impose any condition on the initial geometry of the exceptional divisor, rather it uniquely determines all the subsequent terms as local functionals of this initial datum. Although a formal proof is still missing, numerical and analytical results support the conjecture. As a by-product of our investigation, we have identified some new properties of this type of MA equations that we believe to be so far unknown.


Author(s):  
Vestislav Apostolov ◽  
Jeffrey Streets

Abstract We formulate a Calabi–Yau-type conjecture in generalized Kähler geometry, focusing on the case of nondegenerate Poisson structure. After defining natural Hamiltonian deformation spaces for generalized Kähler structures generalizing the notion of Kähler class, we conjecture unique solvability of Gualtieri’s Calabi–Yau equation within this class. We establish the uniqueness, and moreover show that all such solutions are actually hyper-Kähler metrics. We furthermore establish a GIT framework for this problem, interpreting solutions of this equation as zeroes of a moment map associated to a Hamiltonian action and finding a Kempf–Ness functional. Lastly we indicate the naturality of generalized Kähler–Ricci flow in this setting, showing that it evolves within the given Hamiltonian deformation class, and that the Kempf–Ness functional is monotone, so that the only possible fixed points for the flow are hyper-Kähler metrics. On a hyper-Kähler background, we establish global existence and weak convergence of the flow.


Sign in / Sign up

Export Citation Format

Share Document