On the lattice of varieties of completely simple semigroups

1979 ◽  
Vol 17 (1) ◽  
pp. 113-122 ◽  
Author(s):  
V. V. Rasin
Author(s):  
P. R. Jones

SynopsisThe class CS of completely simple semigroups forms a variety under the operations of multiplication and inversion (x−1 being the inverse of x in its ℋ-class). We determine a Rees matrix representation of the CS-free product of an arbitrary family of completely simple semigroups and deduce a description of the free completely simple semigroups, whose existence was proved by McAlister in 1968 and whose structure was first given by Clifford in 1979. From this a description of the lattice of varieties of completely simple semigroups is given in terms of certain subgroups of a free group of countable rank. Whilst not providing a “list” of identities on completely simple semigroups it does enable us to deduce, for instance, the description of all varieties of completely simple semigroups with abelian subgroups given by Rasin in 1979. It also enables us to describe the maximal subgroups of the “free” idempotent-generated completely simple semigroups T(α, β) denned by Eberhart et al. in 1973 and to show in general the maximal subgroups of the “V-free” semigroups of this type (which we define) need not be free in any variety of groups.


2019 ◽  
Vol 29 (08) ◽  
pp. 1383-1407 ◽  
Author(s):  
Jiří Kad’ourek

In this paper, it is shown that, for every non-trivial variety [Formula: see text] of groups, the variety [Formula: see text] of all completely regular semigroups all of whose subgroups belong to [Formula: see text] is minimal in its kernel class in the lattice [Formula: see text] of all varieties of completely regular semigroups, and hence it constitutes, in fact, a singleton kernel class in the lattice [Formula: see text]. Even more generally, it is shown that, for every variety [Formula: see text] of completely simple semigroups which does not consist entirely of rectangular groups, the variety [Formula: see text] of all completely regular semigroups all of whose completely simple subsemigroups belong to [Formula: see text] is minimal in its kernel class in the lattice [Formula: see text], and hence it likewise constitutes a singleton kernel class in the mentioned lattice [Formula: see text].


Author(s):  
Mario Petrich ◽  
Norman R. Reilly

AbstractCompletely simple semigroups form a variety, , of algebras with the operations of multiplication and inversion. It is known that the mapping , where is the variety of all groups, is an isomorphism of the lattice of all subvarieties of onto a subdirect product of the lattice of subvarieties of and the interval . We consider embeddings of into certain direct products on the above pattern with rectangular bands, rectangular groups and central completely simple semigroups in place of groups.


2013 ◽  
Vol 94 (3) ◽  
pp. 397-416 ◽  
Author(s):  
MARIO PETRICH

AbstractWe consider several familiar varieties of completely regular semigroups such as groups and completely simple semigroups. For each of them, we characterize their members in terms of absence of certain kinds of subsemigroups, as well as absence of certain divisors, and in terms of a homomorphism of a concrete semigroup into the semigroup itself. For each of these varieties $ \mathcal{V} $ we determine minimal non-$ \mathcal{V} $ varieties, provide a basis for their identities, determine their join and give a basis for its identities. Most of this is complete; one of the items missing is a basis for identities for minimal nonlocal orthogroups. Three tables and a figure illustrate the results obtained.


1997 ◽  
Vol 40 (3) ◽  
pp. 457-472 ◽  
Author(s):  
Mario Petrich

Let S be a regular semigroup and be its congruence lattice. For ρ ∈ , we consider the sublattice Lρ of generated by the congruences pw where w ∈ {K, k, T, t}* and w has no subword of the form KT, TK, kt, tk. Here K, k, T, t are the operators on induced by the kernel and the trace relations on . We find explicitly the least lattice L whose homomorphic image is Lρ for all ρ ∈ and represent it as a distributive lattice in terms of generators and relations. We also consider special cases: bands of groups, E-unitary regular semigroups, completely simple semigroups, rectangular groups as well as varieties of completely regular semigroups.


2015 ◽  
Vol 53 (6) ◽  
pp. 520-524
Author(s):  
A. N. Shevlyakov

Sign in / Sign up

Export Citation Format

Share Document