Turbulent dispersion of gaseous pollutants: Numerical study of ground level concentration as a function of Eddy diffusivity parametrization on the atmospheric boundary layer

1982 ◽  
Vol 31 (3) ◽  
pp. 159-190 ◽  
Author(s):  
Teresa Nanni ◽  
M. Tagliazucca
Author(s):  
Dezhi Wei ◽  
Decheng Wan

Abstract Turbine-wake interactions among wind turbine array significantly affect the efficiency of wind farms. Yaw angle control is one of the potential ways to increase the total power generation of wind plants, but the sensitivity of such control strategy to atmospheric stability is rarely studied. In the present work, large-eddy simulation of a two-turbine configuration under convective atmospheric boundary layer is performed, with different yaw angles for the front one, the effect of turbine induced forces on the flow field is modeled by actuator line. Emphasis is placed on wake characteristics and aerodynamic performance. Simulation results reveal that atmospheric stability has a considerable impact on the behavior of wind turbine, wake deflection on the horizontal hub height plane for yawed wind turbine is relatively small, compared with the result of the empirical wake model proposed for wind turbine operating in the neutral stratification, which is attributed to the higher ambient turbulence intensity and large variance of wind direction in the convective condition. And associated with the smaller wake deflection, the total power production does not increase as expected when yawing the upstream turbine. In addition, due to the existence of great quantities of disorganized coherent turbulent structures in the unstable condition, the yaw bearing moment experienced by the downstream wind turbine increases dramatically, even if the rotor plane of the first turbine is perpendicular to the inflow direction.


2015 ◽  
Vol 72 (5) ◽  
pp. 1713-1726 ◽  
Author(s):  
Jordan M. Wilson ◽  
Subhas K. Venayagamoorthy

Abstract In this study, shear-based parameterizations of turbulent mixing in the stable atmospheric boundary layer (SABL) are proposed. A relevant length-scale estimate for the mixing length of the turbulent momentum field is constructed from the turbulent kinetic energy and the mean shear rate S as . Using observational data from two field campaigns—the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment and the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99)— is shown to have a strong correlation with . The relationship between and corresponds to the ratio of the magnitude of the tangential components of the turbulent momentum flux tensor to , known as stress intensity ratio, . The field data clearly show that is linked to stability. The stress intensity ratio also depends on the flow energetics that can be assessed using a shear-production Reynolds number, , where P is shear production of turbulent kinetic energy and is the kinematic viscosity. This analysis shows that high mixing rates can indeed persist at strong stability. On this basis, shear-based parameterizations are proposed for the eddy diffusivity for momentum, , and eddy diffusivity for heat, , showing remarkable agreement with the exact quantities. Furthermore, a broader assessment of the proposed parameterizations is given through an a priori evaluation of large-eddy simulation (LES) data from the first GEWEX Atmospheric Boundary Layer Study (GABLS). The shear-based parameterizations outperform many existing models in predicting turbulent mixing in the SABL. The results of this study provide a framework for improved representation of the SABL in operational models.


Sign in / Sign up

Export Citation Format

Share Document