ambient turbulence
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 23)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 11 (24) ◽  
pp. 12097
Author(s):  
Nikos Spyropoulos ◽  
George Papadakis ◽  
John M. Prospathopoulos ◽  
Vasilis A. Riziotis

In this paper, the accuracy of an in-house Actuator Line (AL) model is tested on aeroelastic simulations of a Wind Turbine (WT) rotor and a helicopter Main Rotor (MR) under uniform free-stream flow. For the scope of aeroelastic analyses, the AL model is coupled with an in-house multibody dynamics code in which the blades are modeled as beams. The advantage from the introduction of CFD analysis in rotorcraft aeroelasticity is related to its capability to account in detail for the interaction of the rotor wake with the boundary layer developed on the surrounding bodies. This has proven to be of great importance in order to accurately estimate the aerodynamic forces and thus the corresponding structural loads and deflections of the blades. In wind turbine applications, a good example of the above is the rotor/ground interaction. In helicopter configurations, the interaction of MR with the ground or the fuselage and the interaction of tail rotor with the duct in fenestron configurations are typical examples. Furthermore, CFD aerodynamic analysis is an obvious modeling option in which the above mentioned asset can be combined with the consideration of the mutual interaction of the rotor with the ambient turbulence. A WT rotor operating inside the atmospheric boundary layer under turbulent free-stream flow is such a case. In the paper, AL results are compared against Blade Element Momentum (BEM) and Lifting Line (LL) model results in the case of the WT, whereas LL and measured data are considered in the helicopter cases. Blade loads and deflections are mainly compared as azimuthal variations. In the helicopter MR cases, where comparison is made against experimental data, harmonic analysis of structural loads is shown as well. Overall, AL proves to be as reliable as LL in the canonical cases addressed in this paper in terms of loads and deflections predictions. Therefore, it can be trusted in more complex flow conditions where viscous effects are pronounced.


2021 ◽  
Vol 160 ◽  
pp. 107882
Author(s):  
Wenjie Wang ◽  
Zhao Li ◽  
Amartansh Dubey ◽  
Pedro Lee ◽  
Mathias Fink ◽  
...  

2021 ◽  
Vol 6 (5) ◽  
pp. 1117-1142
Author(s):  
Davide Conti ◽  
Nikolay Dimitrov ◽  
Alfredo Peña ◽  
Thomas Herges

Abstract. We study the calibration of the Dynamic Wake Meandering (DWM) model using high-spatial- and high-temporal-resolution SpinnerLidar measurements of the wake field collected at the Scaled Wind Farm Technology (SWiFT) facility located in Lubbock, Texas, USA. We derive two-dimensional wake flow characteristics including wake deficit, wake turbulence, and wake meandering from the lidar observations under different atmospheric stability conditions, inflow wind speeds, and downstream distances up to five rotor diameters. We then apply Bayesian inference to obtain a probabilistic calibration of the DWM model, where the resulting joint distribution of parameters allows for both model implementation and uncertainty assessment. We validate the resulting fully resolved wake field predictions against the lidar measurements and discuss the most critical sources of uncertainty. The results indicate that the DWM model can accurately predict the mean wind velocity and turbulence fields in the far-wake region beyond four rotor diameters as long as properly calibrated parameters are used, and wake meandering time series are accurately replicated. We show that the current DWM model parameters in the IEC standard lead to conservative wake deficit predictions for ambient turbulence intensities above 12 % at the SWiFT site. Finally, we provide practical recommendations for reliable calibration procedures.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3826
Author(s):  
Myriam Slama ◽  
Camille Choma Bex ◽  
Grégory Pinon ◽  
Michael Togneri ◽  
Iestyn Evans

This study investigates the wake interaction of four full-scale three-bladed tidal turbines with different ambient turbulence conditions, in straight and yawed flows. A three-dimensional unsteady Lagrangian Vortex Blob software is used for the numerical simulations of the turbines’ wakes. In order to model the ambient turbulence in the Lagrangian Vortex Method formalism, a Synthetic Eddy Method is used. With this method, turbulent structures are added in the computational domain to generate a velocity field which statistically reproduces any ambient turbulence intensity and integral length scale. The influence of the size of the structures and their density (within the study volume) on the wake of a single turbine is studied. Good agreement is obtained between numerical and experimental results for a high turbulence intensity but too many structures can increase the numerical dissipation and reduce the wake extension. Numerical simulations of the four turbine array with the layout initially proposed for the NEPTHYD pilot farm are then presented. Two ambient turbulence intensities encountered in the Alderney Race and two integral length scales are tested with a straight flow. Finally, the wakes obtained for yawed flows with different angles are presented, highlighting turbine interactions.


2021 ◽  
Author(s):  
Clotilde Le Quiniou ◽  
François Schmitt ◽  
Yongxiang Huang ◽  
Enrico Calzavarini ◽  
Sami Souissi

<p>Planktonic copepods are tiny crustaceans, with a typical size of the order of mm, living in suspension in marine or freshwaters during their entire life cycle. They have swimming and jumping abilities and are known to be well adapted to their turbulent environment. Turbulence is known to increase their contact rate and feeding flux. However too intense turbulence is believed to have a negative effect so that a qualitative bell-shape is classically invoked to represent the contact rate of copepods versus turbulence intensity. In this framework, the objective of this work is to quantify the influence of ambient turbulence on copepod’s behavior, using trajectory analysis.</p><p>In this work, the motions of copepods were filmed using an infrared high-speed camera (1000 fps) in a turbulent environment, in the dark to avoid phototropism. The custom-made experimental set-up has been built-up in order to obtain in a central zone an isotropic and homogeneous turbulence representative of the natural environment. The flow was characterized with different tracer sizes at different turbulence intensities.</p><p>Copepods are filmed and the trajectories are extracted using signal processing routines. The instantaneous velocity, tangential and centripetal accelerations, and the local curvature are extracted for each trajectory. Their pdfs are computed, as well as different statistical moments: these indicators are studied at varying the turbulence intensity level (Reynolds number). Particles of different sizes (100 and 600 microns of mean diameters) and dead copepods are compared to living copepods statistics. This strategy allows to precisely characterize the copepods behavioral activity in relation with ambient turbulence. Ecological interpretations are drawn from the experimental results.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 130
Author(s):  
John G. Bartzis ◽  
George C. Efthimiou ◽  
Spyros Andronopoulos

When considering accidental or/and deliberate releases of airborne hazardous substances the release duration is often short and in most cases not precisely known. The downstream exposure in those cases is stochastic due to ambient turbulence and strongly dependent on the release duration. Depending on the adopted modelling approach, a relatively large number of dispersion simulations may be required to assess exposure and its statistical behaviour. The present study introduces a novel approach aiming to replace the large number of the abovementioned simulation scenarios by only one simulation of a corresponding continuous release scenario and to derive the exposure-related quantities for each finite-duration release scenario by simple relationships. The present analysis was concentrated on dosages and peak concentrations as the primary parameters of concern for human health. The experimental and theoretical analysis supports the hypothesis that the dosage statistics for short releases can be correlated with the corresponding continuous release concentration statistics. The analysis shows also that the peak concentration statistics for short-duration releases in terms of ensemble average and standard deviation are well correlated with the corresponding dosage statistics. However, for more reliable quantification of the associated correlation coefficients further experimental and theoretical research is needed. The probability/cumulative density function for dosage and peak concentration can be approximated by the beta function proposed in an earlier work by the authors for continuous releases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Minjun J. Choi ◽  
Lāszlo Bardōczi ◽  
Jae-Min Kwon ◽  
T. S. Hahm ◽  
Hyeon K. Park ◽  
...  

AbstractMagnetic islands (MIs), resulting from a magnetic field reconnection, are ubiquitous structures in magnetized plasmas. In tokamak plasmas, recent researches suggested that the interaction between an MI and ambient turbulence can be important for the nonlinear MI evolution, but a lack of detailed experimental observations and analyses has prevented further understanding. Here, we provide comprehensive observations such as turbulence spreading into an MI and turbulence enhancement at the reconnection site, elucidating intricate effects of plasma turbulence on the nonlinear MI evolution.


2020 ◽  
Vol 88 ◽  
pp. 38-54
Author(s):  
Camille Choma Bex ◽  
Clément Carlier ◽  
Arnaud Fur ◽  
Grégory Pinon ◽  
Grégory Germain ◽  
...  

2020 ◽  
Vol 10 (23) ◽  
pp. 8448
Author(s):  
Benjamin Truchot ◽  
André Carrau ◽  
Véronique Debuy ◽  
Thibauld Penelon ◽  
Jean-Pierre Bertrand

To date, safety distances to toxic pool evaporation as measured by known models have been quoted in hundreds of meters, without a deeper study of the time variation of the evaporation rate. In order to evaluate this specific aspect, we designed an experimental study. This study included small-scale tests with a 0.1 m2 evaporating pool, and medium-scale tests with 1 and 2 m2 evaporating pools. For both small- and medium-scale tests, the experimental vertical velocity profile was built to reproduce an atmospheric profile after applying the Froude scaling procedure. The scope of this study focused on ammonia pool evaporation, with each test lasting long enough to highlight the time evolution of the evaporation rate. While many other parameters may have strongly influenced the evaporation rate, the influence of the most classical parameters was tested, including pool concentration, wind velocity, and ambient turbulence. During these tests, the metrology was designed to enable the measuring of evaporation rates with great precision, but other important components were also measured. This series of tests clearly showed a strong variation of the evaporation rate in the first 30 minutes after the release—the evaporation rate dropped to 20% of its initial value after this 30-min period. It is therefore obvious that such reactions should strongly influence the toxic consequences of the vapor atmospheric dispersion. The known influence of other parameters was also confirmed—typically, the higher the pool concentration and/or wind velocity, the higher the evaporation rate. The surrounding turbulence effect was also taken into consideration and was proven to have a lower influence on the evaporation rate. In light of these experiments, we present below a physical model named EVAP-Tox used to estimate the time variation of the evaporation rate of an ammonia solution.


Sign in / Sign up

Export Citation Format

Share Document