The primitive conjugacy classes and the first homology group of a finite graph

1996 ◽  
Vol 80 (3) ◽  
pp. 1854-1860
Author(s):  
A. M. Nikitin
2020 ◽  
Vol 7 (4) ◽  
pp. 62-71
Author(s):  
Zuzan Naaman Hassan ◽  
Nihad Titan Sarhan

The energy of a graph , is the sum of all absolute values of the eigen values of the adjacency matrix which is indicated by . An adjacency matrix is a square matrix used to represent of finite graph where the rows and columns consist of 0 or 1-entry depending on the adjacency of the vertices of the graph. The group of even permutations of a finite set is known as an alternating group  . The conjugacy class graph is a graph whose vertices are non-central conjugacy classes of a group , where two vertices are connected if their cardinalities are not coprime. In this paper, the conjugacy class of alternating group  of some order for   and their energy are computed. The Maple2019 software and Groups, Algorithms, and Programming (GAP) are assisted for computations.


2018 ◽  
Vol 21 (5) ◽  
pp. 789-816
Author(s):  
Clément Guérin

Abstract In this paper, we classify conjugacy classes of centralizers of irreducible subgroups in {\mathrm{PGL}(n,\mathbb{C})} using alternate modules. When n is square-free, we prove that these conjugacy classes are classified by their isomorphism classes. More generally, we define a finite graph related to this classification whose combinatorial properties are expected to help describe the stratification of the bad locus of some character varieties.


2018 ◽  
Vol 69 (3) ◽  
pp. 1047-1051 ◽  
Author(s):  
Gláucia Dierings ◽  
Pavel Shumyatsky

Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .


2016 ◽  
Vol 285 (1) ◽  
pp. 63-91
Author(s):  
Mauro Costantini
Keyword(s):  

2012 ◽  
Vol 12 (02) ◽  
pp. 1250150 ◽  
Author(s):  
JINSHAN ZHANG ◽  
ZHENCAI SHEN ◽  
SHULIN WU

The finite groups in which every irreducible character vanishes on at most three conjugacy classes were characterized [J. Group Theory13 (2010) 799–819]. Dually, we investigate the finite groups whose columns contain a small number of zeros in the character table.


1999 ◽  
Vol 09 (04n05) ◽  
pp. 471-493 ◽  
Author(s):  
LEONIDAS J. GUIBAS ◽  
JEAN-CLAUDE LATOMBE ◽  
STEVEN M. LAVALLE ◽  
DAVID LIN ◽  
RAJEEV MOTWANI

This paper addresses the problem of planning the motion of one or more pursuers in a polygonal environment to eventually "see" an evader that is unpredictable, has unknown initial position, and is capable of moving arbitrarily fast. This problem was first introduced by Suzuki and Yamashita. Our study of this problem is motivated in part by robotics applications, such as surveillance with a mobile robot equipped with a camera that must find a moving target in a cluttered workspace. A few bounds are introduced, and a complete algorithm is presented for computing a successful motion strategy for a single pursuer. For simply-connected free spaces, it is shown that the minimum number of pursuers required is Θ( lg  n). For multiply-connected free spaces, the bound is [Formula: see text] pursuers for a polygon that has n edges and h holes. A set of problems that are solvable by a single pursuer and require a linear number of recontaminations is shown. The complete algorithm searches a finite graph that is constructed on the basis of critical information changes. It has been implemented and computed examples are shown.


2008 ◽  
Vol 165 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Anupam Singh ◽  
Maneesh Thakur

Sign in / Sign up

Export Citation Format

Share Document