combinatorial properties
Recently Published Documents


TOTAL DOCUMENTS

481
(FIVE YEARS 89)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 10 (1) ◽  
pp. 166-179
Author(s):  
Peter J. Dukes ◽  
Xavier Martínez-Rivera

Abstract The enhanced principal rank characteristic sequence (epr-sequence) of a symmetric matrix B ∈ 𝔽 n×n is defined as ℓ1ℓ2· · · ℓ n , where ℓ j ∈ {A, S, N} according to whether all, some but not all, or none of the principal minors of order j of B are nonzero. Building upon the second author’s recent classification of the epr-sequences of symmetric matrices over the field 𝔽 = 𝔽2, we initiate a study of the case 𝔽= 𝔽3. Moreover, epr-sequences over finite fields are shown to have connections to Ramsey theory and coding theory.


2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Jules Chouquet ◽  
Lionel Vaux Auclair

We examine some combinatorial properties of parallel cut elimination in multiplicative linear logic (MLL) proof nets. We show that, provided we impose a constraint on some paths, we can bound the size of all the nets satisfying this constraint and reducing to a fixed resultant net. This result gives a sufficient condition for an infinite weighted sum of nets to reduce into another sum of nets, while keeping coefficients finite. We moreover show that our constraints are stable under reduction. Our approach is motivated by the quantitative semantics of linear logic: many models have been proposed, whose structure reflect the Taylor expansion of multiplicative exponential linear logic (MELL) proof nets into infinite sums of differential nets. In order to simulate one cut elimination step in MELL, it is necessary to reduce an arbitrary number of cuts in the differential nets of its Taylor expansion. It turns out our results apply to differential nets, because their cut elimination is essentially multiplicative. We moreover show that the set of differential nets that occur in the Taylor expansion of an MELL net automatically satisfies our constraints. Interestingly, our nets are untyped: we only rely on the sequentiality of linear logic nets and the dynamics of cut elimination. The paths on which we impose bounds are the switching paths involved in the Danos--Regnier criterion for sequentiality. In order to accommodate multiplicative units and weakenings, our nets come equipped with jumps: each weakening node is connected to some other node. Our constraint can then be summed up as a bound on both the length of switching paths, and the number of weakenings that jump to a common node.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8188
Author(s):  
Giovanni Andreatta ◽  
Carla De Francesco ◽  
Luigi De Giovanni

Automation plays an important role in modern transportation and handling systems, e.g., to control the routes of aircraft and ground service equipment in airport aprons, automated guided vehicles in port terminals or in public transportation, handling robots in automated factories, drones in warehouse picking operations, etc. Information technology provides hardware and software (e.g., collision detection sensors, routing and collision avoidance logic) that contribute to safe and efficient operations, with relevant social benefits in terms of improved system performance and reduced accident rates. In this context, we address the design of efficient collision-free routes in a minimum-size routing network. We consider a grid and a set of vehicles, each moving from the bottom of the origin column to the top of the destination column. Smooth nonstop paths are required, without collisions nor deviations from shortest paths, and we investigate the minimum number of horizontal lanes allowing for such routing. The problem is known as fleet quickest routing problem on grids. We propose a mathematical formulation solved, for small instances, through standard solvers. For larger instances, we devise heuristics that, based on known combinatorial properties, define priorities, and design collision-free routes. Experiments on random instances show that our algorithms are able to quickly provide good quality solutions.


Author(s):  
Kathrin Maurischat ◽  
Rainer Weissauer

AbstractWe investigate several families of polynomials that are related to certain Euler type summation operators. Being integer valued at integral points, they satisfy combinatorial properties and nearby symmetries, due to triangle recursion relations involving squares of polynomials. Some of these interpolate the Delannoy numbers. The results are motivated by and strongly related to our study of irreducible Lie supermodules, where dimension polynomials in many cases show similar features.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miquel Pons ◽  
Josep Batle

AbstractThe combinatorial study of phylogenetic networks has attracted much attention in recent times. In particular, one class of them, the so-called tree-child networks, are becoming the most prominent ones. However, their combinatorial properties are largely unknown. In this paper we address the problem of exactly counting them. We conjecture a relationship with the cardinality of a certain class of words. By solving the counting problem for the words, and on the basis of the conjecture, several simple recurrence formulas for general cases arise. Moreover, a precise asymptotic analysis is provided. Our results coincide with all current formulas in the literature for particular subclasses of tree-child networks, as well as with numerical results obtained for small networks. We expect that the study of the relationship between the newly defined words and the networks will lead to further combinatoric characterizations of this class of phylogenetic networks.


2021 ◽  
Vol 58 (3) ◽  
pp. 293-307
Author(s):  
Takao Komatsu ◽  
José L. Ramírez ◽  
Diego Villamizar

In this paper, we investigate a generalization of the classical Stirling numbers of the first kind by considering permutations over tuples with an extra condition on the minimal elements of the cycles. The main focus of this work is the analysis of combinatorial properties of these new objects. We give general combinatorial identities and some recurrence relations. We also show some connections with other sequences such as poly-Cauchy numbers with higher level and central factorial numbers. To obtain our results, we use pure combinatorial arguments and classical manipulations of formal power series.


2021 ◽  
Vol 37 ◽  
pp. 613-639
Author(s):  
Richard A. Brualdi ◽  
Geir Dahl

Sign-restricted matrices (SRMs) are $(0, \pm 1)$-matrices where, ignoring 0's, the signs in each column alternate beginning with a $+1$ and all partial row sums are nonnegative. The most investigated of these matrices are the alternating sign matrices (ASMs), where the rows also have the alternating sign property, and all row and column sums equal 1. We introduce monotone triangles to represent SRMs and investigate some of their properties and connections to certain polytopes. We also investigate two partial orders for ASMs related to their patterns alternating cycles and show a number of combinatorial properties of these orders.


2021 ◽  
Vol 55 (3) ◽  
pp. 102-106
Author(s):  
Rodrigo Iglesias ◽  
Eduardo Sáenz de Cabezón

Involutive bases were introduced in [6] as a type of Gröbner bases with additional combinatorial properties. Pommaret bases are a particular kind of involutive bases with strong relations to commutative algebra and algebraic geometry[11, 12].


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 207
Author(s):  
Takao Komatsu

There are many kinds of generalizations of Cauchy numbers and polynomials. Recently, a parametric type of the Bernoulli numbers with level 3 was introduced and studied as a kind of generalization of Bernoulli polynomials. A parametric type of Cauchy numbers with level 3 is its analogue. In this paper, as an analogue of a parametric type of Bernoulli polynomials with level 3 and its extension, we introduce a parametric type of Cauchy polynomials with a higher level. We present their characteristic and combinatorial properties. By using recursions, we show some determinant expressions.


2021 ◽  
Vol 118 (36) ◽  
pp. e2021103118
Author(s):  
Michael Yarus

Minimally evolved codes are constructed here; these have randomly chosen standard genetic code (SGC) triplets, completed with completely random triplet assignments. Such “genetic codes” have not evolved, but retain SGC qualities. Retained qualities are basic, part of the underpinning of coding. For example, the sensitivity of coding to arbitrary assignments, which must be < ∼10%, is intrinsic. Such sensitivity comes from the elementary combinatorial properties of coding and constrains any SGC evolution hypothesis. Similarly, assignment of last-evolved functions is difficult because of late kinetic phenomena, likely common across codes. Census of minimally evolved code assignments shows that shape and size of wobble domains controls the code’s fit into a coding table, strongly shifting accuracy of codon assignments. Access to the SGC therefore requires a plausible pathway to limited randomness, avoiding difficult completion while fitting a highly ordered, degenerate code into a preset three-dimensional space. Three-dimensional late Crick wobble in a genetic code assembled by lateral transfer between early partial codes satisfies these varied, simultaneous requirements. By allowing parallel evolution of SGC domains, this origin can yield shortened evolution to SGC-level order and allow the code to arise in smaller populations. It effectively yields full codes. Less obviously, it unifies previously studied chemical, biochemical, and wobble order in amino acid assignment, including a stereochemical minority of triplet–amino acid associations. Finally, fusion of intermediates into the final SGC is credible, mirroring broadly accepted later cellular evolution.


Sign in / Sign up

Export Citation Format

Share Document