Probabilistic contractor couple and solutions for a system of nonlinear equations in non-archimedean menger probabilistic normed spaces

1991 ◽  
Vol 12 (11) ◽  
pp. 1031-1038 ◽  
Author(s):  
Zhang Shi-sheng ◽  
Peng Yong-cheng
2000 ◽  
Vol 110 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Y.J. Cho ◽  
N.J. Huang ◽  
S.M. Kang

2013 ◽  
Vol 59 (2) ◽  
pp. 299-320
Author(s):  
M. Eshaghi Gordji ◽  
Y.J. Cho ◽  
H. Khodaei ◽  
M. Ghanifard

Abstract In this paper, we investigate the general solution and the generalized stability for the quartic, cubic and additive functional equation (briefly, QCA-functional equation) for any k∈ℤ-{0,±1} in Menger probabilistic normed spaces.


2019 ◽  
Vol 10 (4) ◽  
pp. 877-886 ◽  
Author(s):  
Chhavi Mangla ◽  
Musheer Ahmad ◽  
Moin Uddin

2014 ◽  
Vol 33 (2) ◽  
pp. 59-67
Author(s):  
Pankaj Kumar ◽  
S. S. Bhatia ◽  
Vijay Kumar

In this paper, we aim to generalize the notion of statistical convergence for double sequences on probabilistic normed spaces with the help of two nondecreasing sequences of positive real numbers $\lambda=(\lambda_{n})$ and $\mu = (\mu_{n})$  such that each tending to zero, also $\lambda_{n+1}\leq \lambda_{n}+1, \lambda_{1}=1,$ and $\mu_{n+1}\leq \mu_{n}+1, \mu_{1}=1.$ We also define generalized statistically Cauchy double sequences on PN space and establish the Cauchy convergence criteria in these spaces.


Author(s):  
Chuan He ◽  
Gang Zhao ◽  
Aizeng Wang ◽  
Fei Hou ◽  
Zhanchuan Cai ◽  
...  

AbstractThis paper presents a novel algorithm for planar G1 interpolation using typical curves with monotonic curvature. The G1 interpolation problem is converted into a system of nonlinear equations and sufficient conditions are provided to check whether there is a solution. The proposed algorithm was applied to a curve completion task. The main advantages of the proposed method are its simple construction, compatibility with NURBS, and monotonic curvature.


2009 ◽  
Vol 2009 ◽  
pp. 1-17
Author(s):  
Fatemeh Lael ◽  
Kourosh Nourouzi

The compact operators defined on2-normed spaces are investigated, and then the main ideas are generalized to operators defined on2-probabilistic normed spaces.


SPIN ◽  
2021 ◽  
pp. 2140004
Author(s):  
Cheng Xue ◽  
Yuchun Wu ◽  
Guoping Guo

While quantum computing provides an exponential advantage in solving the system of linear equations, there is little work to solve the system of nonlinear equations with quantum computing. We propose quantum Newton’s method (QNM) for solving [Formula: see text]-dimensional system of nonlinear equations based on Newton’s method. In QNM, we solve the system of linear equations in each iteration of Newton’s method with quantum linear system solver. We use a specific quantum data structure and [Formula: see text] tomography with sample error [Formula: see text] to implement the classical-quantum data conversion process between the two iterations of QNM, thereby constructing the whole process of QNM. The complexity of QNM in each iteration is [Formula: see text]. Through numerical simulation, we find that when [Formula: see text], QNM is still effective, so the complexity of QNM is sublinear with [Formula: see text], which provides quantum advantage compared with the optimal classical algorithm.


Sign in / Sign up

Export Citation Format

Share Document