Visual Computing for Industry Biomedicine and Art
Latest Publications


TOTAL DOCUMENTS

97
(FIVE YEARS 88)

H-INDEX

4
(FIVE YEARS 3)

Published By Springer (Biomed Central Ltd.)

2524-4442

Author(s):  
Harmandeep Singh ◽  
Vipul Sharma ◽  
Damanpreet Singh

AbstractThis paper introduces a comparative analysis of the proficiencies of various textures and geometric features in the diagnosis of breast masses on mammograms. An improved machine learning-based framework was developed for this study. The proposed system was tested using 106 full field digital mammography images from the INbreast dataset, containing a total of 115 breast mass lesions. The proficiencies of individual and various combinations of computed textures and geometric features were investigated by evaluating their contributions towards attaining higher classification accuracies. Four state-of-the-art filter-based feature selection algorithms (Relief-F, Pearson correlation coefficient, neighborhood component analysis, and term variance) were employed to select the top 20 most discriminative features. The Relief-F algorithm outperformed other feature selection algorithms in terms of classification results by reporting 85.2% accuracy, 82.0% sensitivity, and 88.0% specificity. A set of nine most discriminative features were then selected, out of the earlier mentioned 20 features obtained using Relief-F, as a result of further simulations. The classification performances of six state-of-the-art machine learning classifiers, namely k-nearest neighbor (k-NN), support vector machine, decision tree, Naive Bayes, random forest, and ensemble tree, were investigated, and the obtained results revealed that the best classification results (accuracy = 90.4%, sensitivity = 92.0%, specificity = 88.0%) were obtained for the k-NN classifier with the number of neighbors having k = 5 and squared inverse distance weight. The key findings include the identification of the nine most discriminative features, that is, FD26 (Fourier Descriptor), Euler number, solidity, mean, FD14, FD13, periodicity, skewness, and contrast out of a pool of 125 texture and geometric features. The proposed results revealed that the selected nine features can be used for the classification of breast masses in mammograms.


Author(s):  
Denis Bienroth ◽  
Hieu T. Nim ◽  
Dimitar Garkov ◽  
Karsten Klein ◽  
Sabrina Jaeger-Honz ◽  
...  

AbstractSpatially resolved transcriptomics is an emerging class of high-throughput technologies that enable biologists to systematically investigate the expression of genes along with spatial information. Upon data acquisition, one major hurdle is the subsequent interpretation and visualization of the datasets acquired. To address this challenge, VR-Cardiomicsis presented, which is a novel data visualization system with interactive functionalities designed to help biologists interpret spatially resolved transcriptomic datasets. By implementing the system in two separate immersive environments, fish tank virtual reality (FTVR) and head-mounted display virtual reality (HMD-VR), biologists can interact with the data in novel ways not previously possible, such as visually exploring the gene expression patterns of an organ, and comparing genes based on their 3D expression profiles. Further, a biologist-driven use-case is presented, in which immersive environments facilitate biologists to explore and compare the heart expression profiles of different genes.


Author(s):  
Gengsheng L. Zeng

AbstractMetal objects in X-ray computed tomography can cause severe artifacts. The state-of-the-art metal artifact reduction methods are in the sinogram inpainting category and are iterative methods. This paper proposes a projection-domain algorithm to reduce the metal artifacts. In this algorithm, the unknowns are the metal-affected projections, while the objective function is set up in the image domain. The data fidelity term is not utilized in the objective function. The objective function of the proposed algorithm consists of two terms: the total variation of the metal-removed image and the energy of the negative-valued pixels in the image. After the metal-affected projections are modified, the final image is reconstructed via the filtered backprojection algorithm. The feasibility of the proposed algorithm has been verified by real experimental data.


Author(s):  
Shuyao Zhou ◽  
Tianqian Zhu ◽  
Kanle Shi ◽  
Yazi Li ◽  
Wen Zheng ◽  
...  

AbstractLight fields are vector functions that map the geometry of light rays to the corresponding plenoptic attributes. They describe the holographic information of scenes by representing the amount of light flowing in every direction through every point in space. The physical concept of light fields was first proposed in 1936, and light fields are becoming increasingly important in the field of computer graphics, especially with the fast growth of computing capacity as well as network bandwidth. In this article, light field imaging is reviewed from the following aspects with an emphasis on the achievements of the past five years: (1) depth estimation, (2) content editing, (3) image quality, (4) scene reconstruction and view synthesis, and (5) industrial products because the technologies of lights fields also intersect with industrial applications. State-of-the-art research has focused on light field acquisition, manipulation, and display. In addition, the research has extended from the laboratory to industry. According to these achievements and challenges, in the near future, the applications of light fields could offer more portability, accessibility, compatibility, and ability to visualize the world.


Author(s):  
Toshita Sharma ◽  
Manan Shah

AbstractDiabetes mellitus has been an increasing concern owing to its high morbidity, and the average age of individual affected by of individual affected by this disease has now decreased to mid-twenties. Given the high prevalence, it is necessary to address with this problem effectively. Many researchers and doctors have now developed detection techniques based on artificial intelligence to better approach problems that are missed due to human errors. Data mining techniques with algorithms such as - density-based spatial clustering of applications with noise and ordering points to identify the cluster structure, the use of machine vision systems to learn data on facial images, gain better features for model training, and diagnosis via presentation of iridocyclitis for detection of the disease through iris patterns have been deployed by various practitioners. Machine learning classifiers such as support vector machines, logistic regression, and decision trees, have been comparative discussed various authors. Deep learning models such as artificial neural networks and recurrent neural networks have been considered, with primary focus on long short-term memory and convolutional neural network architectures in comparison with other machine learning models. Various parameters such as the root-mean-square error, mean absolute errors, area under curves, and graphs with varying criteria are commonly used. In this study, challenges pertaining to data inadequacy and model deployment are discussed. The future scope of such methods has also been discussed, and new methods are expected to enhance the performance of existing models, allowing them to attain greater insight into the conditions on which the prevalence of the disease depends.


Author(s):  
Chuan He ◽  
Gang Zhao ◽  
Aizeng Wang ◽  
Fei Hou ◽  
Zhanchuan Cai ◽  
...  

AbstractThis paper presents a novel algorithm for planar G1 interpolation using typical curves with monotonic curvature. The G1 interpolation problem is converted into a system of nonlinear equations and sufficient conditions are provided to check whether there is a solution. The proposed algorithm was applied to a curve completion task. The main advantages of the proposed method are its simple construction, compatibility with NURBS, and monotonic curvature.


Author(s):  
Vinh T Nguyen ◽  
Kwanghee Jung ◽  
Vibhuti Gupta

AbstractData visualization blends art and science to convey stories from data via graphical representations. Considering different problems, applications, requirements, and design goals, it is challenging to combine these two components at their full force. While the art component involves creating visually appealing and easily interpreted graphics for users, the science component requires accurate representations of a large amount of input data. With a lack of the science component, visualization cannot serve its role of creating correct representations of the actual data, thus leading to wrong perception, interpretation, and decision. It might be even worse if incorrect visual representations were intentionally produced to deceive the viewers. To address common pitfalls in graphical representations, this paper focuses on identifying and understanding the root causes of misinformation in graphical representations. We reviewed the misleading data visualization examples in the scientific publications collected from indexing databases and then projected them onto the fundamental units of visual communication such as color, shape, size, and spatial orientation. Moreover, a text mining technique was applied to extract practical insights from common visualization pitfalls. Cochran’s Q test and McNemar’s test were conducted to examine if there is any difference in the proportions of common errors among color, shape, size, and spatial orientation. The findings showed that the pie chart is the most misused graphical representation, and size is the most critical issue. It was also observed that there were statistically significant differences in the proportion of errors among color, shape, size, and spatial orientation.


Author(s):  
Gijs M. W. Reichert ◽  
Marcos Pieras ◽  
Ricardo Marroquim ◽  
Anna Vilanova

AbstractOne common way to aid coaching and seek to improve athletes’ performance is by recording training sessions for posterior analysis. In the case of sailing, coaches record videos from another boat, but usually rely on handheld devices, which may lead to issues with the footage and missing important moments. On the other hand, by autonomously recording the entire session with a fixed camera, the analysis becomes challenging owing to the length of the video and possible stabilization issues. In this work, we aim to facilitate the analysis of such full-session videos by automatically extracting maneuvers and providing a visualization framework to readily locate interesting moments. Moreover, we address issues related to image stability. Finally, an evaluation of the framework points to the benefits of video stabilization in this scenario and an appropriate accuracy of the maneuver detection method.


Author(s):  
Qaiser Abbas ◽  
Farheen Ramzan ◽  
Muhammad Usman Ghani

AbstractAcral melanoma (AM) is a rare and lethal type of skin cancer. It can be diagnosed by expert dermatologists, using dermoscopic imaging. It is challenging for dermatologists to diagnose melanoma because of the very minor differences between melanoma and non-melanoma cancers. Most of the research on skin cancer diagnosis is related to the binary classification of lesions into melanoma and non-melanoma. However, to date, limited research has been conducted on the classification of melanoma subtypes. The current study investigated the effectiveness of dermoscopy and deep learning in classifying melanoma subtypes, such as, AM. In this study, we present a novel deep learning model, developed to classify skin cancer. We utilized a dermoscopic image dataset from the Yonsei University Health System South Korea for the classification of skin lesions. Various image processing and data augmentation techniques have been applied to develop a robust automated system for AM detection. Our custom-built model is a seven-layered deep convolutional network that was trained from scratch. Additionally, transfer learning was utilized to compare the performance of our model, where AlexNet and ResNet-18 were modified, fine-tuned, and trained on the same dataset. We achieved improved results from our proposed model with an accuracy of more than 90 % for AM and benign nevus, respectively. Additionally, using the transfer learning approach, we achieved an average accuracy of nearly 97 %, which is comparable to that of state-of-the-art methods. From our analysis and results, we found that our model performed well and was able to effectively classify skin cancer. Our results show that the proposed system can be used by dermatologists in the clinical decision-making process for the early diagnosis of AM.


Author(s):  
Rafael Garcia ◽  
Tanja Munz ◽  
Daniel Weiskopf

AbstractIn this paper, we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks. Our technique allows the user to interactively inspect how hidden states store and process information throughout the feeding of an input sequence into the network. The technique can help answer questions, such as which parts of the input data have a higher impact on the prediction and how the model correlates each hidden state configuration with a certain output. Our visual analytics approach comprises several components: First, our input visualization shows the input sequence and how it relates to the output (using color coding). In addition, hidden states are visualized through a nonlinear projection into a 2-D visualization space using t-distributed stochastic neighbor embedding to understand the shape of the space of the hidden states. Trajectories are also employed to show the details of the evolution of the hidden state configurations. Finally, a time-multi-class heatmap matrix visualizes the evolution of the expected predictions for multi-class classifiers, and a histogram indicates the distances between the hidden states within the original space. The different visualizations are shown simultaneously in multiple views and support brushing-and-linking to facilitate the analysis of the classifications and debugging for misclassified input sequences. To demonstrate the capability of our approach, we discuss two typical use cases for long short-term memory models applied to two widely used natural language processing datasets.


Sign in / Sign up

Export Citation Format

Share Document