The lateral completion of an arbitrary lattice-ordered group (Bernau's proof revisited)

1981 ◽  
Vol 13 (1) ◽  
pp. 251-263 ◽  
Author(s):  
Stephen H. McCleary
1971 ◽  
Vol 5 (3) ◽  
pp. 331-335 ◽  
Author(s):  
Roger D. Bleier

We show that each archimedean lattice-ordered group is contained in a unique (up to isomorphism) minimal archimedean vector lattice. This improves a result of Paul F. Conrad appearing previously in this Bulletin. Moreover, we show that this relationship between archimedean lattice-ordered groups and archimedean vector lattices is functorial.


1981 ◽  
Vol 24 (2) ◽  
pp. 137-151
Author(s):  
Gary Davis ◽  
Stephen H. McCleary

Let G be a lattice-ordered group (l-group), and let t, u∈ G+. We write tπu if t ∧ g = 1 is equivalent to u ∧ g = 1, and say that a tight Riesz order T on G is π-full if t ∈ T and t π U imply u∈T. We study the set of π-full tight Riesz orders on an l-permutation group (G, Ω), Ω a totally ordered set.


1975 ◽  
Vol 20 (3) ◽  
pp. 281-289 ◽  
Author(s):  
Joe L. Mott

Let G be an abelian lattice ordered group (an l-group). If G is, in fact, totally ordered, we say that G is an 0–group. A subgroup and a sublattice of G is an l-subgroup. A subgroup C of G is called convex if 0 ≦ g ≦ c ∈ C and g ∈ G imply g ∈ C, C is an l-ideal if C is a convex l-subgroup of G. If C is an l-ideal of G, then G/C is also an l-group under the canonical ordering inherited from G. If, in fact, G/C is an 0–group, then C is said to be a prime subgroup of G.


1969 ◽  
Vol 21 ◽  
pp. 1004-1012 ◽  
Author(s):  
Richard D. Byrd

Conrad (10) and Wolfenstein (15; 16) have introduced the notion of an archimedean extension (a-extension) of a lattice-ordered group (l-group). In this note the class of l-groups that possess a plenary subset of regular subgroups which are normal in the convex l-subgroups that cover them are studied. It is shown in § 3 (Corollary 3.4) that the class is closed with respect to a-extensions and (Corollary 3.7) that each member of the class has an a-closure. This extends (6, p. 324, Corollary II; 10, Theorems 3.2 and 4.2; 15, Theorem 1) and gives a partial answer to (10, p. 159, Question 1). The key to proving both of these results is Theorem 3.3, which asserts that if a regular subgroup is normal in the convex l-subgroup that covers it, then this property is preserved by a-extensions.


Order ◽  
1989 ◽  
Vol 6 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Manfred Droste ◽  
Stephen H. McCleary

1978 ◽  
Vol 19 (2) ◽  
pp. 135-139 ◽  
Author(s):  
R. D. Byrd ◽  
J. T. Lloyd ◽  
J. W. Stepp

In 1954 N. Kimura proved that each idempotent in a semigroup is contained in a unique maximal subgroup of the semigroup and that distinct maximal subgroups are disjoint [13] (or see [6, pp. 21–23]). This generalized earlier results of Schwarz [14] and Wallace [15]. These maximal subgroups are important in the study of semigroups. If G is a group, then the collection S(G) of nonempty complexes of G is a semigroup and it is natural to inquire what properties of G are inherited by the maximal subgroups of S(G). There seems to be very little literature devoted to this subject. In [5, Theorem 2], with certain hypotheses placed on an idempotent, it was shown that if G is a lattice-ordered group (“1-group”) then a maximal subgroup of S(G) containing an idempotent satisfying these conditions admits a natural lattice-order. The main result of this note (Theorem 1) is that if Gis a representable 1-group and E is a normal idempotent of S(G) and a dual ideal of the lattice G, then the maximal subgroup of S(G) containing E admits a representable lattice-order.


2020 ◽  
Vol 70 (5) ◽  
pp. 1189-1196
Author(s):  
Mahmood Pourgholamhossein ◽  
Mohammad Ali Ranjbar

AbstractIn this paper we investigate some fundamental properties of unital topology on a lattice ordered group with order unit. We show that some essential properties of order unit norm on a vector lattice with order unit, are valid for unital l-groups. For instance we show that for an Archimedean Riesz space G with order unit u, the unital topology and the strong link topology are the same.


2009 ◽  
Vol 59 (2) ◽  
Author(s):  
Štefan Černák ◽  
Judita Lihová

AbstractThe notion of a relatively uniform convergence (ru-convergence) has been used first in vector lattices and then in Archimedean lattice ordered groups.Let G be an Archimedean lattice ordered group. In the present paper, a relative uniform completion (ru-completion) $$ G_{\omega _1 } $$ of G is dealt with. It is known that $$ G_{\omega _1 } $$ exists and it is uniquely determined up to isomorphisms over G. The ru-completion of a finite direct product and of a completely subdirect product are established. We examine also whether certain properties of G remain valid in $$ G_{\omega _1 } $$. Finally, we are interested in the existence of a greatest convex l-subgroup of G, which is complete with respect to ru-convergence.


2012 ◽  
Vol 23 (12) ◽  
pp. 1250123 ◽  
Author(s):  
JEONG HEE HONG ◽  
NADIA S. LARSEN ◽  
WOJCIECH SZYMAŃSKI

We investigate KMS states of Fowler's Nica–Toeplitz algebra [Formula: see text] associated to a compactly aligned product system X over a semigroup P of Hilbert bimodules. This analysis relies on restrictions of these states to the core algebra which satisfy appropriate scaling conditions. The concept of product system of finite type is introduced. If (G, P) is a lattice ordered group and X is a product system of finite type over P satisfying certain coherence properties, we construct KMSβ states of [Formula: see text] associated to a scalar dynamics from traces on the coefficient algebra of the product system. Our results were motivated by, and generalize some of the results of Laca and Raeburn obtained for the Toeplitz algebra of the affine semigroup over the natural numbers.


Sign in / Sign up

Export Citation Format

Share Document