Minimizing movements and evolution problems in Euclidean spaces

1999 ◽  
Vol 176 (1) ◽  
pp. 29-48
Author(s):  
Massimo Gobbino
Author(s):  
Peng Lu ◽  
Jiuru Zhou

AbstractWe construct the ancient solutions of the hypersurface flows in Euclidean spaces studied by B. Andrews in 1994.As time {t\rightarrow 0^{-}} the solutions collapse to a round point where 0 is the singular time. But as {t\rightarrow-\infty} the solutions become more and more oval. Near the center the appropriately-rescaled pointed Cheeger–Gromov limits are round cylinder solutions {S^{J}\times\mathbb{R}^{n-J}}, {1\leq J\leq n-1}. These results are the analog of the corresponding results in Ricci flow ({J=n-1}) and mean curvature flow.


2016 ◽  
Vol 138 ◽  
pp. 208-235 ◽  
Author(s):  
Gary Greaves ◽  
Jacobus H. Koolen ◽  
Akihiro Munemasa ◽  
Ferenc Szöllősi

Author(s):  
Maria Michaela Porzio

AbstractIn this paper, we study the behavior in time of the solutions for a class of parabolic problems including the p-Laplacian equation and the heat equation. Either the case of singular or degenerate equations is considered. The initial datum $$u_0$$ u 0 is a summable function and a reaction term f is present in the problem. We prove that, despite the lack of regularity of $$u_0$$ u 0 , immediate regularization of the solutions appears for data f sufficiently regular and we derive estimates that for zero data f become the known decay estimates for these kinds of problems. Besides, even if f is not regular, we show that it is possible to describe the behavior in time of a suitable class of solutions. Finally, we establish some uniqueness results for the solutions of these evolution problems.


1992 ◽  
Vol 56 (1) ◽  
pp. 1-8 ◽  
Author(s):  
J Reiterman ◽  
V Rödl ◽  
E S̆in̆ajová

Sign in / Sign up

Export Citation Format

Share Document