The cohomology ring of a monomial algebra

1994 ◽  
Vol 85 (1) ◽  
pp. 11-23 ◽  
Author(s):  
E. L. Green ◽  
D. Zacharia

Author(s):  
Hongbo Shi

We describe the cohomology ring of a monomial algebra in the language of dimension tree or minimal resolution graph and in this context we study the finite generation of the cohomology rings of the extension algebras, showing among others that the cohomology ring [Formula: see text] is finitely generated [Formula: see text] is [Formula: see text] is, where [Formula: see text] is the dual extension of a monomial algebra [Formula: see text] and [Formula: see text] is the opposite algebra of [Formula: see text].



2006 ◽  
Vol 05 (02) ◽  
pp. 153-192 ◽  
Author(s):  
EDWARD L. GREEN ◽  
NICOLE SNASHALL ◽  
ØYVIND SOLBERG

For a finite dimensional monomial algebra Λ over a field K we show that the Hochschild cohomology ring of Λ modulo the ideal generated by homogeneous nilpotent elements is a commutative finitely generated K-algebra of Krull dimension at most one. This was conjectured to be true for any finite dimensional algebra over a field in [13].





2006 ◽  
Vol 105 (2) ◽  
pp. 233-258 ◽  
Author(s):  
Edward L. Green ◽  
Nicole Snashall




1972 ◽  
Vol 24 (3) ◽  
pp. 426-431 ◽  
Author(s):  
J. P. E. Hodgson

Let Mm be a closed PL manifold of dimension m. Then a concordance between two PL-homeomorphisms h0, h1:M → M is a PL-homeomorphismH: M × I → M × I such that H|M × 0 = h0 and H|M × 1 = h. Concordance is an equivalence relation and in his paper [2], M. Kato classifies PL-homeomorphisms of Sp × Sq up to concordance. To do this he treats first the problem of classifying those homeomorphisms that induce the identity in homology, and then describes the automorphisms of the cohomology ring that can arise from homeomorphisms of Sp × Sq. In this paper we show that for sufficiently connected PL-manifolds that embed in codimension 1, one can extend Kato's classification of the homeomorphisms that induce the identity in homology.



2003 ◽  
Vol 174 (1) ◽  
pp. 115-153 ◽  
Author(s):  
Victor Guillemin ◽  
Catalin Zara
Keyword(s):  


1962 ◽  
Vol 79 (1) ◽  
pp. 297-306
Author(s):  
Robert Heaton
Keyword(s):  


1999 ◽  
Vol 51 (3) ◽  
pp. 488-505 ◽  
Author(s):  
W. D. Burgess ◽  
Manuel Saorín

AbstractThis article studies algebras R over a simple artinian ring A, presented by a quiver and relations and graded by a semigroup Σ. Suitable semigroups often arise from a presentation of R. Throughout, the algebras need not be finite dimensional. The graded K0, along with the Σ-graded Cartan endomorphisms and Cartan matrices, is examined. It is used to study homological properties.A test is found for finiteness of the global dimension of a monomial algebra in terms of the invertibility of the Hilbert Σ-series in the associated path incidence ring.The rationality of the Σ-Euler characteristic, the Hilbert Σ-series and the Poincaré-Betti Σ-series is studied when Σ is torsion-free commutative and A is a division ring. These results are then applied to the classical series. Finally, we find new finite dimensional algebras for which the strong no loops conjecture holds.



Sign in / Sign up

Export Citation Format

Share Document