A total finite-dimensional selection theorem

1998 ◽  
Vol 39 (5) ◽  
pp. 835-843
Author(s):  
S. M. Ageev ◽  
D. Repovs
Author(s):  
Dušan Repovš ◽  
Pavel Vladimirovič Semenov

2018 ◽  
Vol 7 (2) ◽  
pp. 197-209
Author(s):  
Pascal Gourdel ◽  
Nadia Mâagli

AbstractIn the spirit of Michael’s selection theorem [6, Theorem 3.1”’], we consider a nonempty convex-valued lower semicontinuous correspondence {\varphi:X\to 2^{Y}}. We prove that if φ has either closed or finite-dimensional images, then there admits a continuous single-valued selection, where X is a metric space and Y is a Banach space. We provide a geometric and constructive proof of our main result based on the concept of peeling introduced in this paper.


2011 ◽  
Vol 34 (3) ◽  
pp. 464-473
Author(s):  
Adel A. George Michael

Author(s):  
Dušan Repovš ◽  
Pavel Vladimirovič Semenov

1994 ◽  
Vol 33 (01) ◽  
pp. 81-84 ◽  
Author(s):  
S. Cerutti ◽  
S. Guzzetti ◽  
R. Parola ◽  
M.G. Signorini

Abstract:Long-term regulation of beat-to-beat variability involves several different kinds of controls. A linear approach performed by parametric models enhances the short-term regulation of the autonomic nervous system. Some non-linear long-term regulation can be assessed by the chaotic deterministic approach applied to the beat-to-beat variability of the discrete RR-interval series, extracted from the ECG. For chaotic deterministic systems, trajectories of the state vector describe a strange attractor characterized by a fractal of dimension D. Signals are supposed to be generated by a deterministic and finite dimensional but non-linear dynamic system with trajectories in a multi-dimensional space-state. We estimated the fractal dimension through the Grassberger and Procaccia algorithm and Self-Similarity approaches of the 24-h heart-rate variability (HRV) signal in different physiological and pathological conditions such as severe heart failure, or after heart transplantation. State-space representations through Return Maps are also obtained. Differences between physiological and pathological cases have been assessed and generally a decrease in the system complexity is correlated to pathological conditions.


Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter introduces the concept of stable completion and provides a concrete representation of unit vector Mathematical Double-Struck Capital A superscript n in terms of spaces of semi-lattices, with particular emphasis on the frontier between the definable and the topological categories. It begins by constructing a topological embedding of unit vector Mathematical Double-Struck Capital A superscript n into the inverse limit of a system of spaces of semi-lattices L(Hsubscript d) endowed with the linear topology, where Hsubscript d are finite-dimensional vector spaces. The description is extended to the projective setting. The linear topology is then related to the one induced by the finite level morphism L(Hsubscript d). The chapter also considers the condition that if a definable set in L(Hsubscript d) is an intersection of relatively compact sets, then it is itself relatively compact.


1996 ◽  
Author(s):  
Ajit Shenoy ◽  
Eugene Cliff ◽  
Matthias Heinkenschloss

Sign in / Sign up

Export Citation Format

Share Document