Quantum field theory and the two-body problem of general relativity

1955 ◽  
Vol 1 (6) ◽  
pp. 1289-1290 ◽  
Author(s):  
E. Corinaldesi
1971 ◽  
Vol 3 (4) ◽  
pp. 933-944 ◽  
Author(s):  
C. Fronsdal ◽  
Robert W. Huff

Author(s):  
Sauro Succi

Chapter 32 expounded the basic theory of quantum LB for the case of relativistic and non-relativistic wavefunctions, namely single-particle quantum mechanics. This chapter goes on to cover extensions of the quantum LB formalism to the overly challenging arena of quantum many-body problems and quantum field theory, along with an appraisal of prospective quantum computing implementations. Solving the single particle Schrodinger, or Dirac, equation in three dimensions is a computationally demanding task. This task, however, pales in front of the ordeal of solving the Schrodinger equation for the quantum many-body problem, namely a collection of many quantum particles, typically nuclei and electrons in a given atom or molecule.


In this contribution, my purpose is to study a new mathematical instrument introduced by me in 1958-9: the tensor and spinor propagators. These propagators are extensions of the scalar propagator of Jordan-Pauli which plays an important part in quantum-field theory. It is possible to construct, with these propagators, commutators and anticommutators for the various free fields, in the framework of general relativity theory (see Lichnerowicz 1959 a, b, c , 1960, 1961 a, b, c ; and for an independent introduction of propagators DeWitt & Brehme 1960).


An investigation is started into a possible mathematical structure of the Wheeler-DeWitt superspace quantization of general relativity. The emphasis is placed throughout on quantum field theory aspects of the problem and topics discussed include canonical commutation relations in a triad basis, the status of the constraint equation and the rôle played by perturbation theory.


Sign in / Sign up

Export Citation Format

Share Document