Identification of models using failure rate and mean residual life of doubly truncated random variables

2004 ◽  
Vol 45 (1) ◽  
pp. 97-109 ◽  
Author(s):  
P. G. Sankaran ◽  
S. M. Sunoj
1989 ◽  
Vol 26 (03) ◽  
pp. 532-542 ◽  
Author(s):  
Joseph Kupka ◽  
Sonny Loo

A new measure of the ageing process called the vitality measure is introduced. It measures the ‘vitality' of a time period in terms of the increase in average lifespan which results from surviving that time period. Apart from intrinsic interest, the vitality measure clarifies the relationship between the familiar properties of increasing hazard and decreasing mean residual life. The main theorem asserts that increasing hazard is equivalent to the requirement that mean residual life decreases faster than vitality. It is also shown for general (i.e. not necessarily absolutely continuous) distributions that the properties of increasing hazard, increasing failure rate, and increasing probability of ‘sudden death' are all equivalent.


1982 ◽  
Vol 19 (01) ◽  
pp. 158-166 ◽  
Author(s):  
Malay Ghosh ◽  
Nader Ebrahimi

Shock models leading to various univariate and bivariate increasing failure rate (IFR) and decreasing mean residual life (DMRL) distributions are discussed. For proving the IFR properties, shocks are not necessarily assumed to be governed by a Poisson process.


2010 ◽  
Vol 25 (1) ◽  
pp. 103-118 ◽  
Author(s):  
Ramesh C. Gupta ◽  
Weston Viles

The investigation in this article was motivated by an extended generalized inverse Gaussian (EGIG) distribution, which has more than one turning point of the failure rate for certain values of the parameters. In order to study the turning points of a failure rate, we appeal to Glaser's eta function, which is much simpler to handle. We present some general results for studying the reationship among the change points of Glaser's eta function, the failure rate, and the mean residual life function (MRLF). Additionally we establish an ordering among the number of change points of Glaser's eta function, the failure rate, and the MRLF. These results are used to investigate, in detail, the monotonicity of the three functions in the case of the EGIG. The EGIG model has one additional parameter, δ, than the generalized inverse Gaussian (GIG) model's three parameters; see Jorgensen [7]. It has been observed that the EGIG model fits certain datasets better than the GIG of Jorgensen [7]. Thus, the purpose of this article is to present some general results dealing with the relationship among the change points of the three functions described earlier. The EGIG model is used as an illustration.


1999 ◽  
Vol 48 (3) ◽  
pp. 262-266 ◽  
Author(s):  
G.L. Ghai ◽  
Jie Mi

2003 ◽  
Vol 37 (12-13) ◽  
pp. 1271-1280 ◽  
Author(s):  
R.C. Gupta ◽  
D.M. Bradley

Sign in / Sign up

Export Citation Format

Share Document