A six-mode truncation of the Navier-Stokes equations on a two-dimensional torus: a numerical study

1981 ◽  
Vol 64 (2) ◽  
pp. 207-220 ◽  
Author(s):  
P. M. Angelo ◽  
G. Riela
1987 ◽  
Vol 178 ◽  
pp. 345-365 ◽  
Author(s):  
Philippe R. Spalart ◽  
Kyung-Soo Yang

The early three-dimensional stages of transition in the Blasius boundary layer are studied by numerical solution of the Navier-Stokes equations. A finite-amplitude two-dimensional wave and low-amplitude three-dimensional random disturbances are introduced. Rapid amplification of the three-dimensional components is observed and leads to transition. For intermediate amplitudes of the two-dimensional wave the breakdown is of subharmonic type, and the dominant spanwise wavenumber increases with the amplitude. For high amplitudes the energy of the fundamental mode is comparable to the energy of the subharmonic mode, but never dominates it; the breakdown is of mixed type. Visualizations, energy histories, and spectra are presented. The sensitivity of the results to various physical and numerical parameters is studied. The agreement with experimental and theoretical results is discussed.


Author(s):  
Huan Ping ◽  
Yan Bao ◽  
Dai Zhou ◽  
Zhaolong Han

Abstract In this paper, we conducted a three-dimensional investigation of flow past a cylinder undergoing forced oscillation. The flow configuration is similar to the work of Blackburn & Henderson (1999) [1], in which Reynolds number equals to 500 and a fixed motion amplitude of A/D = 0.25. The oscillation frequencies are varied in the range near to the natural shedding frequency of a stationary cylinder. The flow dynamics are governed by Navier-Stokes equations and the solutions are obtained by employing high-order spectral/hp element method. It is found that the flow dynamics are significantly distinguished from the study of two-dimensional flow by Blackburn & Henderson (1999) [1]. The values of hydrodynamic forces are smaller compared to that in the two-dimensional study. However, lock-in boundary we identified is broader. In addition, a different type of hysteresis loop of energy transfer coefficient is obtained.


Sign in / Sign up

Export Citation Format

Share Document