dimensional simulation
Recently Published Documents


TOTAL DOCUMENTS

2455
(FIVE YEARS 340)

H-INDEX

66
(FIVE YEARS 9)

Author(s):  
Stephen Burns Menary ◽  
Darren David Price

Abstract We show that density models describing multiple observables with (i) hard boundaries and (ii) dependence on external parameters may be created using an auto-regressive Gaussian mixture model. The model is designed to capture how observable spectra are deformed by hypothesis variations, and is made more expressive by projecting data onto a configurable latent space. It may be used as a statistical model for scientific discovery in interpreting experimental observations, for example when constraining the parameters of a physical model or tuning simulation parameters according to calibration data. The model may also be sampled for use within a Monte Carlo simulation chain, or used to estimate likelihood ratios for event classification. The method is demonstrated on simulated high-energy particle physics data considering the anomalous electroweak production of a $Z$ boson in association with a dijet system at the Large Hadron Collider, and the accuracy of inference is tested using a realistic toy example. The developed methods are domain agnostic; they may be used within any field to perform simulation or inference where a dataset consisting of many real-valued observables has conditional dependence on external parameters.


2022 ◽  
Vol 14 (1) ◽  
pp. 213
Author(s):  
Jinsong Qiu ◽  
Zhimin Zhang ◽  
Zhen Chen ◽  
Shuo Han ◽  
Wei Wang ◽  
...  

Space–time waveform-encoding (STWE) SAR can receive echoes from multiple sub-swaths simultaneously with a single receive window. The echoes overlap each other in the time domain. To separate the echoes from different directions, traditional schemes adapt single-null steering techniques for digital receive beam patterns. However, the problems of spaceborne DBF-SAR, in practice, such as null extension loss, terrain undulation, elevation angle of arrival extension, and spaceborne antenna beam control, make the conventional scheme unable to effectively separate the echoes from different sub-swaths, which overlap each other in the time domain.A novel multi-null constrained echo separation scheme is proposed to overcome the shortcomings of the conventional scheme. The proposed algorithm can flexibly adjust the width of the notch to track the time-varying pulse extension angle with less resource consumption. Moreover, the hardware implementation details of the corresponding real-time processing architecture are discussed. The two-dimensional simulation results indicate that the proposed scheme can effectively improve the performance of echo separation. The effectiveness of the proposed method is verified by raw data processing instance of an X-band 16-channel DBF-SAR airborne system.


2022 ◽  
Author(s):  
Robert A McDougal ◽  
Cameron Conte ◽  
Lia Eggleston ◽  
Adam John Hunter Newton ◽  
Hana Galijasevic

Neuronal activity is the result of both the electrophysiology and chemophysiology. A neuron can be well represented for the purposes of electrophysiological simulation as a tree composed of connected cylinders. This representation is also apt for 1D simulations of their chemophysiology, provided the spatial scale is larger than the diameter of the cylinders and there is radial symmetry. Higher dimensional simulation is necessary to accurately capture the dynamics when these criteria are not met, such as with wave curvature, spines, or diffusion near the soma. We have developed a solution to enable efficient finite volume method simulation of reaction-diffusion kinetics in intracellular 3D regions in neuron and network models and provide an implementation within the NEURON simulator. An accelerated version of the CTNG 3D reconstruction algorithm transforms morphologies suitable for ion-channel based simulations into consistent 3D voxelized regions. Kinetics are then solved using a parallel algorithm based on Douglas-Gunn that handles the irregular 3D geometry of a neuron; these kinetics are coupled to NEURON's 1D mechanisms for ion channels, synapses, etc. The 3D domain may cover the entire cell or selected regions of interest. Simulations with dendritic spines and of the soma reveal details of dynamics that would be missed in a pure 1D simulation. We describe and validate the methods and discuss their performance.


Author(s):  
Dmitry Kolomenskiy ◽  
Ryo Onishi ◽  
Hitoshi Uehara

Abstract A wavelet-based method for compression of three-dimensional simulation data is presented and its software framework is described. It uses wavelet decomposition and subsequent range coding with quantization suitable for floating-point data. The effectiveness of this method is demonstrated by applying it to example numerical tests, ranging from idealized configurations to realistic global-scale simulations. The novelty of this study is in its focus on assessing the impact of compression on post-processing and restart of numerical simulations. Graphical abstract


2021 ◽  
pp. 163-172
Author(s):  
Junxiang Gao ◽  
Xiaoliang Gao ◽  
Wei Zou

Taking the lubrication system of rotary tillage engine as the research object, this paper makes a three-dimensional simulation study on the oil flow characteristics in the lubricating oil passage. The oil supply of the oil pump shall be greater than the circulating oil required by the lubrication system to ensure the lubrication of the rotary cultivator. Lubrication system is an important part to ensure the reliability and durability of rotary cultivator. The key component to achieve its performance is the oil pump. The geometric model of lubricating oil flow field in rotary tiller lubrication system is established by using FLUENT software. The results show that the pressure drop in the lubricating oil passage of the main bearing is the largest under the same working conditions. In the oil passage of the cylinder head, the pressure drop of the front main oil passage is the largest and the oil discharge is the largest. Add 1.6mm oil pump rotor on the basis of the thickness of the original oil pump rotor, the oil flow at the connecting rod nozzle reaches the flow index of the original rotary cultivator, and there is no cylinder pulling phenomenon of the rotary cultivator.


2021 ◽  
Author(s):  
Dong-Ning Yue ◽  
Min Chen ◽  
Yao Zhao ◽  
Pan-Fei Geng ◽  
Xiao-Hui Yuan ◽  
...  

Abstract Generation of nonlinear structures, such as stimulated Raman side scattering waves, post-solitons and electron vortices, during ultra-short intense laser pulse transportation in near-critical-density (NCD) plasmas are studied by using multi-dimensional particle-in-cell (PIC) simulations. In two-dimensional geometries, both P- and S- polarized laser pulses are used to drive these nonlinear structures and to check the polarization effects on them. In the S-polarized case, the scattered waves can be captured by surrounding plasmas leading to the generation of post-solitons, while the main pulse excites convective electric currents leading to the formation of electron vortices through Kelvin-Helmholtz instability (KHI). In the P-polarized case, the scattered waves dissipate their energy by heating surrounding plasmas. Electron vortices are excited due to the hosing instability of the drive laser. These polarization dependent physical processes are reproduced in two different planes perpendicular to the laser propagation direction in three-dimensional simulation with linearly polarized laser driver. The current work provides inspiration for future experiments of laser-NCD plasma interactions.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Pengyuan Wang ◽  
Jie Li

We performed three-dimensional reconstruction of facial CT scan images of patients with mandibular angle hypertrophy to explore the related factors of mandibular angle hypertrophy. At the same time, the article uses the results of three-dimensional reconstruction to simulate the clinical operation and obtain the final operation method. It was found that all patients were able to obtain the proper surgical plan from the three-dimensional reconstructed images and can get the hypertrophy factor of the mandibular angle. For this reason, we conclude that computer reconstruction simulation technology can obtain the tissue changes before and after osteotomy of mandibular angle hypertrophy and get the cause of hypertrophy. Three-dimensional reconstruction simulation technology is the best auxiliary diagnosis plan for the selection of mandibular angle surgery.


Sign in / Sign up

Export Citation Format

Share Document