flow past a cylinder
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 23)

H-INDEX

23
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5582
Author(s):  
Rong Han ◽  
Wei Liu ◽  
Xiao-Liang Yang ◽  
Xing-Hua Chang

The flow past a cylinder is a classical problem in flow physics. In a certain range of Reynolds number, there will be Karman vortex street phenomenon in the wake of a cylinder, which will greatly increase the pressure drag of the cylinder. By controlling the vortex shedding phenomenon, drag reduction of the cylinder could be effectively realized. In this paper, a NACA0012 airfoil with pitching oscillation is placed downstream of the cylinder. Based on the tight coupling method, kinematics equations and Navier–Stokes equations in the arbitrary Lagrangian–Eulerian form are solved. Firstly, the effect of airfoil oscillation period and the distance between airfoil leading edge and cylinder center (x/D) are studied respectively, especially considering the aspects of vortex shedding and drag reduction effect. Besides, the vortex interaction in the flow field around the airfoil and cylinder is analyzed in detail. It is found that the NACA0012 airfoil with pitching oscillation can change the period of vortex shedding. Moreover, it can also increase the drag reduction rate to as high as 50.5%, which presents a certain application prospect in the engineering drag reduction field, e.g., for launch vehicles, ship masts, submarine pipelines, etc.


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 302 ◽  
Author(s):  
Michele Girfoglio ◽  
Annalisa Quaini ◽  
Gianluigi Rozza

We present a stabilized POD–Galerkin reduced order method (ROM) for a Leray model. For the implementation of the model, we combine a two-step algorithm called Evolve-Filter (EF) with a computationally efficient finite volume method. In both steps of the EF algorithm, velocity and pressure fields are approximated using different POD basis and coefficients. To achieve pressure stabilization, we consider and compare two strategies: the pressure Poisson equation and the supremizer enrichment of the velocity space. We show that the evolve and filtered velocity spaces have to be enriched with the supremizer solutions related to both evolve and filter pressure fields in order to obtain stable and accurate solutions with the supremizer enrichment method. We test our ROM approach on a 2D unsteady flow past a cylinder at Reynolds number 0≤Re≤100. We find that both stabilization strategies produce comparable errors in the reconstruction of the lift and drag coefficients, with the pressure Poisson equation method being more computationally efficient.


Author(s):  
Francisco Felis-Carrasco ◽  
David Hess ◽  
Bo Beltoft Watz ◽  
Miguel Alfonso Mendez

This work discusses an approach to compute pressure fields from planar PIV measurement using standard CFD tools. In particular, we propose a combination of interpolation and mesh adaptation to import the PIV measurements on a grid that is morphed around objects, and is fine enough to solve the Poisson equation accurately. The whole process of meshing, interpolation and pressure computation is carried out using the popular open-source solver OpenFoam®. The method is tested and validated on a classic benchmark test case, namely, the unsteady flow past a cylinder. A 3D multiphase flow simulation is used to generate the reference data and analyze the impact of both, the PIV interrogation and the interpolation on the morphed grid. The simulation uses an Euler-Lagrangian one-way coupling approach to simulate the flow field and the dynamics of seeding particles. The analysis compares the pressure field from the 3D CFD simulation with the solution of a 2D Poisson equation based on the 2D velocity field obtained by either down-sampling the CFD data or by PIV interrogation of synthetic images built from the CFD data. Finally, we challenge the proposed method with the pressure reconstruction in a TR-PIV experiment in similar conditions.


2021 ◽  
Vol 42 (7) ◽  
pp. 1715-1727
Author(s):  
Alexander Mazo ◽  
Valeriy Molochnikov ◽  
Evgeniy Kalinin ◽  
Anton Paereliy ◽  
Nickolay Dushin ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Anupam Bhandari

AbstractThis work investigates time-dependent ferrofluid flow past in a cylinder in the presence of a 10 kilo-ampere per meter magnetic field. The Reynolds number is about a hundred to keep the laminar flow and it is high enough to form a von Karman vortex street. This study presents the results for the velocity distributions, pressure distributions, lift coefficient, and drag coefficient under the influence of the stationary magnetic field. These results are compared with the flow in the absence of the magnetic field. The presence of the magnetic field diminishes the velocity distributions in the flow due to magnetization force and magnetic field dependent viscosity. This reduction in the velocity reduces the average velocity in the flow and therefore the magnetic field intensity enhances the coefficients of drag and lift. In the presence of the applied magnetic field, the velocity drops from 2.19 to 1.97 m/s at t = 7 s. However, the lift coefficients enhance from 3 m2s2/kg to 3.4 m2s2/kg and the drag coefficient enhances from 0.9 to 3 m2s2/kg. The numerical simulation of the problem is obtained using the finite element method in COMSOL Multiphysics.


Sign in / Sign up

Export Citation Format

Share Document