Kähler structures on complex torus

2000 ◽  
Vol 10 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Meng-Kiat Chuah
2020 ◽  
Vol 7 (1) ◽  
pp. 241-256
Author(s):  
Matthew Gibson ◽  
Jeffrey Streets

AbstractWe describe natural deformation classes of generalized Kähler structures using the Courant symmetry group, which determine natural extensions of the notions of Kähler class and Kähler cone to generalized Kähler geometry. We show that the generalized Kähler-Ricci flow preserves this generalized Kähler cone, and the underlying real Poisson tensor.


1990 ◽  
Vol 108 (4) ◽  
pp. 971-971
Author(s):  
Chal Benson ◽  
Carolyn S. Gordon
Keyword(s):  

2015 ◽  
Vol 07 (02) ◽  
pp. 293-307
Author(s):  
Indranil Biswas

Let G be a connected reductive complex affine algebraic group and K ⊂ G a maximal compact subgroup. Let M be a compact complex torus equipped with a flat Kähler structure and (EG, θ) a polystable Higgs G-bundle on M. Take any C∞ reduction of structure group EK ⊂ EG to the subgroup K that solves the Yang–Mills equation for (EG, θ). We prove that the principal G-bundle EG is polystable and the above reduction EK solves the Einstein–Hermitian equation for EG. We also prove that for a semistable (respectively, polystable) Higgs G-bundle (EG, θ) on a compact connected Calabi–Yau manifold, the underlying principal G-bundle EG is semistable (respectively, polystable).


2020 ◽  
Vol 151 ◽  
pp. 103634
Author(s):  
Yicao Wang
Keyword(s):  

1974 ◽  
Vol 54 ◽  
pp. 123-134 ◽  
Author(s):  
Hiroshi Umemura

In [7], Matsushima studied the vector bundles over a complex torus. One of his main theorems is: A vector bundle over a complex torus has a connection if and only if it is homogeneous (Theorem (2.3)). The aim of this paper is to prove the characteristic p > 0 version of this theorem. However in the characteristic p > 0 case, for any vector bundle E over a scheme defined over a field k with char, k = p, the pull back F*E of E by the Frobenius endomorphism F has a connection. Hence we have to replace the connection by the stratification (cf. (2.1.1)). Our theorem states: Let A be an abelian variety whose p-rank is equal to the dimension of A. Then a vector bundle over A has a stratification if and only if it is homogeneous (Theorem (2.5)).


Sign in / Sign up

Export Citation Format

Share Document