scholarly journals A theorem of Matsushima

1974 ◽  
Vol 54 ◽  
pp. 123-134 ◽  
Author(s):  
Hiroshi Umemura

In [7], Matsushima studied the vector bundles over a complex torus. One of his main theorems is: A vector bundle over a complex torus has a connection if and only if it is homogeneous (Theorem (2.3)). The aim of this paper is to prove the characteristic p > 0 version of this theorem. However in the characteristic p > 0 case, for any vector bundle E over a scheme defined over a field k with char, k = p, the pull back F*E of E by the Frobenius endomorphism F has a connection. Hence we have to replace the connection by the stratification (cf. (2.1.1)). Our theorem states: Let A be an abelian variety whose p-rank is equal to the dimension of A. Then a vector bundle over A has a stratification if and only if it is homogeneous (Theorem (2.5)).

2020 ◽  
Vol 20 (3) ◽  
pp. 401-412
Author(s):  
Alex Küronya ◽  
Yusuf Mustopa

AbstractWe ask when the CM (Castelnuovo–Mumford) regularity of a vector bundle on a projective variety X is numerical, and address the case when X is an abelian variety. We show that the continuous CM-regularity of a semihomogeneous vector bundle on an abelian variety X is a piecewise-constant function of Chern data, and we also use generic vanishing theory to obtain a sharp upper bound for the continuous CM-regularity of any vector bundle on X. From these results we conclude that the continuous CM-regularity of many semihomogeneous bundles — including many Verlinde bundles when X is a Jacobian — is both numerical and extremal.


1971 ◽  
Vol 43 ◽  
pp. 41-72 ◽  
Author(s):  
Tadao Oda

Let k be an algebraically closed field of characteristic p≧ 0, and let X be an abelian variety over k.The goal of this paper is to answer the following questions, when dim(X) = 1 and p≠0, posed by R. Hartshorne: (1)Is E(P) indecomposable, when E is an indecomposable vector bundle on X?(2)Is the Frobenius map F*: H1 (X, E) → H1 (X, E(p)) injective?We also partly answer the following question posed by D. Mumford:(3)Classify, or at least say anything about, vector bundles on X when dim (X) > 1.


1976 ◽  
Vol 61 ◽  
pp. 197-202 ◽  
Author(s):  
Jun-Ichi Hano

This note is to be a supplement of the preceeding paper in the journal by Matsushima, settling a question raised by him. In his paper he associates a holomorphic vector bundle over a complex torus to a holomorphic representation of what he calls Heisenberg group. We shall show that a simple holomorphic vector bundle is determined in this manner if and only if the associated projective bundle admits an integrable holomorphic connection. A theorem by Morikawa ([3], Theorem 1) is the motivation of this problem and is somewhat strengthened by our result.


2020 ◽  
Vol 31 (12) ◽  
pp. 2050097
Author(s):  
Indranil Biswas ◽  
Krishna Hanumanthu ◽  
D. S. Nagaraj

We study the following question: Given a vector bundle on a projective variety [Formula: see text] such that the restriction of [Formula: see text] to every closed curve [Formula: see text] is ample, under what conditions [Formula: see text] is ample? We first consider the case of an abelian variety [Formula: see text]. If [Formula: see text] is a line bundle on [Formula: see text], then we answer the question in the affirmative. When [Formula: see text] is of higher rank, we show that the answer is affirmative under some conditions on [Formula: see text]. We then study the case of [Formula: see text], where [Formula: see text] is a reductive complex affine algebraic group, and [Formula: see text] is a parabolic subgroup of [Formula: see text]. In this case, we show that the answer to our question is affirmative if [Formula: see text] is [Formula: see text]-equivariant, where [Formula: see text] is a fixed maximal torus. Finally, we compute the Seshadri constant for such vector bundles defined on [Formula: see text].


2021 ◽  
Vol 71 (1) ◽  
pp. 199-210
Author(s):  
Aniruddha C. Naolekar

Abstract Let 𝓔 k denote the set of diffeomorphism classes of closed connected smooth k-manifolds X with the property that for any oriented vector bundle α over X, the Euler class e(α) = 0. We show that if X ∈ 𝓔2n+1 is orientable, then X is a rational homology sphere and π 1(X) is perfect. We also show that 𝓔8 = ∅ and derive additional cohomlogical restrictions on orientable manifolds in 𝓔 k .


2011 ◽  
Vol 84 (2) ◽  
pp. 255-260
Author(s):  
EDOARDO BALLICO ◽  
FRANCESCO MALASPINA

AbstractHere we classify the weakly uniform rank two vector bundles on multiprojective spaces. Moreover, we show that every rank r>2 weakly uniform vector bundle with splitting type a1,1=⋯=ar,s=0 is trivial and every rank r>2 uniform vector bundle with splitting type a1>⋯>ar splits.


Author(s):  
Nils A. Baas ◽  
Marcel Bökstedt ◽  
Tore August Kro

AbstractFor a 2-category 2C we associate a notion of a principal 2C-bundle. For the 2-category of 2-vector spaces, in the sense of M.M. Kapranov and V.A. Voevodsky, this gives the 2-vector bundles of N.A. Baas, B.I. Dundas and J. Rognes. Our main result says that the geometric nerve of a good 2-category is a classifying space for the associated principal 2-bundles. In the process of proving this we develop powerful machinery which may be useful in further studies of 2-categorical topology. As a corollary we get a new proof of the classification of principal bundles. Another 2-category of 2-vector spaces has been proposed by J.C. Baez and A.S. Crans. A calculation using our main theorem shows that in this case the theory of principal 2-bundles splits, up to concordance, as two copies of ordinary vector bundle theory. When 2C is a cobordism type 2-category we get a new notion of cobordism-bundles which turns out to be classified by the Madsen–Weiss spaces.


Author(s):  
Mihajlo Cekić ◽  
Thibault Lefeuvre

Abstract Given a smooth Hermitian vector bundle $\mathcal{E}$ over a closed Riemannian manifold $(M,g)$, we study generic properties of unitary connections $\nabla ^{\mathcal{E}}$ on the vector bundle $\mathcal{E}$. First of all, we show that twisted conformal Killing tensors (CKTs) are generically trivial when $\dim (M) \geq 3$, answering an open question of Guillarmou–Paternain–Salo–Uhlmann [ 14]. In negative curvature, it is known that the existence of twisted CKTs is the only obstruction to solving exactly the twisted cohomological equations, which may appear in various geometric problems such as the study of transparent connections. The main result of this paper says that these equations can be generically solved. As a by-product, we also obtain that the induced connection $\nabla ^{\textrm{End}({\operatorname{{\mathcal{E}}}})}$ on the endomorphism bundle $\textrm{End}({\operatorname{{\mathcal{E}}}})$ has generically trivial CKTs as long as $(M,g)$ has no nontrivial CKTs on its trivial line bundle. Eventually, we show that, under the additional assumption that $(M,g)$ is Anosov (i.e., the geodesic flow is Anosov on the unit tangent bundle), the connections are generically opaque, namely that generically there are no non-trivial subbundles of $\mathcal{E}$ that are preserved by parallel transport along geodesics. The proofs rely on the introduction of a new microlocal property for (pseudo)differential operators called operators of uniform divergence type, and on perturbative arguments from spectral theory (especially on the theory of Pollicott–Ruelle resonances in the Anosov case).


2019 ◽  
Vol 7 ◽  
Author(s):  
A. ASOK ◽  
J. FASEL ◽  
M. J. HOPKINS

Suppose $X$ is a smooth complex algebraic variety. A necessary condition for a complex topological vector bundle on $X$ (viewed as a complex manifold) to be algebraic is that all Chern classes must be algebraic cohomology classes, that is, lie in the image of the cycle class map. We analyze the question of whether algebraicity of Chern classes is sufficient to guarantee algebraizability of complex topological vector bundles. For affine varieties of dimension ${\leqslant}3$, it is known that algebraicity of Chern classes of a vector bundle guarantees algebraizability of the vector bundle. In contrast, we show in dimension ${\geqslant}4$ that algebraicity of Chern classes is insufficient to guarantee algebraizability of vector bundles. To do this, we construct a new obstruction to algebraizability using Steenrod operations on Chow groups. By means of an explicit example, we observe that our obstruction is nontrivial in general.


Sign in / Sign up

Export Citation Format

Share Document