Periodic solutions of an infinite dimensional riccati equation

Author(s):  
G. Da Prato
2015 ◽  
Vol 25 (03) ◽  
pp. 1550043 ◽  
Author(s):  
Yixian Gao ◽  
Weipeng Zhang ◽  
Shuguan Ji

This paper is devoted to the study of quasi-periodic solutions of a nonlinear wave equation with x-dependent coefficients. Such a model arises from the forced vibration of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. Based on the partial Birkhoff normal form and an infinite-dimensional KAM theorem, we can obtain the existence of quasi-periodic solutions for this model under the general boundary conditions.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Alvaro H. Salas S ◽  
Cesar A. Gómez S

The general projective Riccati equation method and the Exp-function method are used to construct generalized soliton solutions and periodic solutions to special KdV equation with variable coefficients and forcing term.


2020 ◽  
Vol 24 (6 Part B) ◽  
pp. 3995-4000
Author(s):  
Xiao-Jun Yin ◽  
Quan-Sheng Liu ◽  
Lian-Gui Yang ◽  
N Narenmandula

In this paper, a non-linear (3+1)-dimensional Zakharov-Kuznetsov equation is investigated by employing the subsidiary equation method, which arises in quantum magneto plasma. The periodic solutions, rational wave solutions, soliton solutions for the quantum Zakharov-Kuznetsov equation which play an important role in mathematical physics are obtained with the help of the Riccati equation expan?sion method. Meanwhile, the electrostatic potential can be accordingly obtained. Compared to the other methods, the exact solutions obtained will extend on earlier reports by using the Riccati equation.


Author(s):  
Robert Hermann ◽  
Clyde Martin

Sign in / Sign up

Export Citation Format

Share Document