A. Geometrical construction of 2-dimensional galois representations of A5-type. B. On the realisation of the groups PSL2(1) as galois groups over number fields by means of l-torsion points of elliptic curves

Author(s):  
Martin Kinzelbach
2013 ◽  
Vol 13 (3) ◽  
pp. 517-559 ◽  
Author(s):  
Eric Larson ◽  
Dmitry Vaintrob

AbstractGiven an abelian variety $A$ of dimension $g$ over a number field $K$, and a prime $\ell $, the ${\ell }^{n} $-torsion points of $A$ give rise to a representation ${\rho }_{A, {\ell }^{n} } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ( \mathbb{Z} / {\ell }^{n} \mathbb{Z} )$. In particular, we get a mod-$\ell $representation ${\rho }_{A, \ell } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ({ \mathbb{F} }_{\ell } )$ and an $\ell $-adic representation ${\rho }_{A, {\ell }^{\infty } } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ({ \mathbb{Z} }_{\ell } )$. In this paper, we describe the possible determinants of subquotients of these two representations. These two lists turn out to be remarkably similar.Applying our results in dimension $g= 1$, we recover a generalized version of a theorem of Momose on isogeny characters of elliptic curves over number fields, and obtain, conditionally on the Generalized Riemann Hypothesis, a generalization of Mazur’s bound on rational isogenies of prime degree to number fields.


1986 ◽  
Vol 104 ◽  
pp. 43-53 ◽  
Author(s):  
Kay Wingberg

Coates and Wiles [1] and B. Perrin-Riou (see [2]) study the arithmetic of an elliptic curve E defined over a number field F with complex multiplication by an imaginary quadratic field K by using p-adic techniques, which combine the classical descent of Mordell and Weil with ideas of Iwasawa’s theory of Zp-extensions of number fields. In a special case they consider a non-cyclotomic Zp-extension F∞ defined via torsion points of E and a certain Iwasawa module attached to E/F, which can be interpreted as an abelian Galois group of an extension of F∞. We are interested in the corresponding non-abelian Galois group and we want to show that the whole situation is quite analogous to the case of the cyclotomic Zp-extension (which is generated by torsion points of Gm).


2017 ◽  
Vol 369 (12) ◽  
pp. 8457-8496 ◽  
Author(s):  
Abbey Bourdon ◽  
Pete L. Clark ◽  
James Stankewicz

2017 ◽  
Vol 60 (2) ◽  
pp. 411-434 ◽  
Author(s):  
MARUSIA REBOLLEDO ◽  
CHRISTIAN WUTHRICH

AbstractModular curves likeX0(N) andX1(N) appear very frequently in arithmetic geometry. While their complex points are obtained as a quotient of the upper half plane by some subgroups of SL2(ℤ), they allow for a more arithmetic description as a solution to a moduli problem. We wish to give such a moduli description for two other modular curves, denoted here byXnsp(p) andXnsp+(p) associated to non-split Cartan subgroups and their normaliser in GL2(𝔽p). These modular curves appear for instance in Serre's problem of classifying all possible Galois structures ofp-torsion points on elliptic curves over number fields. We give then a moduli-theoretic interpretation and a new proof of a result of Chen (Proc. London Math. Soc.(3)77(1) (1998), 1–38;J. Algebra231(1) (2000), 414–448).


Author(s):  
Mima Stanojkovski ◽  
Christopher Voll

AbstractWe describe the automorphism groups of finite p-groups arising naturally via Hessian determinantal representations of elliptic curves defined over number fields. Moreover, we derive explicit formulas for the orders of these automorphism groups for elliptic curves of j-invariant 1728 given in Weierstrass form. We interpret these orders in terms of the numbers of 3-torsion points (or flex points) of the relevant curves over finite fields. Our work greatly generalizes and conceptualizes previous examples given by du Sautoy and Vaughan-Lee. It explains, in particular, why the orders arising in these examples are polynomial on Frobenius sets and vary with the primes in a nonquasipolynomial manner.


2020 ◽  
Vol 305 (1) ◽  
pp. 43-88 ◽  
Author(s):  
Abbey Bourdon ◽  
Pete L. Clark Clark

2017 ◽  
Vol 234 ◽  
pp. 17-45 ◽  
Author(s):  
IMIN CHEN ◽  
YOONJIN LEE

Let $K=\mathbb{F}_{q}(T)$ and $A=\mathbb{F}_{q}[T]$. Suppose that $\unicode[STIX]{x1D719}$ is a Drinfeld $A$-module of rank $2$ over $K$ which does not have complex multiplication. We obtain an explicit upper bound (dependent on $\unicode[STIX]{x1D719}$) on the degree of primes ${\wp}$ of $K$ such that the image of the Galois representation on the ${\wp}$-torsion points of $\unicode[STIX]{x1D719}$ is not surjective, in the case of $q$ odd. Our results are a Drinfeld module analogue of Serre’s explicit large image results for the Galois representations on $p$-torsion points of elliptic curves (Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331; Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Etudes Sci. Publ. Math. 54 (1981), 323–401.) and are unconditional because the generalized Riemann hypothesis for function fields holds. An explicit isogeny theorem for Drinfeld $A$-modules of rank $2$ over $K$ is also proven.


Sign in / Sign up

Export Citation Format

Share Document