On structures of L2-well-posed mixed problems for hyperbolic operators

Author(s):  
Taira Shirota
2014 ◽  
Vol 11 (01) ◽  
pp. 185-213 ◽  
Author(s):  
TATSUO NISHITANI

We study differential operators of order 2 and establish new energy estimates which ensure that the micro supports of solutions to the Cauchy problem propagate with finite speed. We then study the Cauchy problem for non-effectively hyperbolic operators with no null bicharacteristic tangent to the doubly characteristic set and with zero positive trace. By checking the energy estimates, we ensure the propagation with finite speed of the micro supports of solutions, and we prove that the Cauchy problem for such non-effectively hyperbolic operators is C∞ well-posed if and only if the Levi condition holds.


2020 ◽  
Vol 11 (4) ◽  
pp. 1991-2022
Author(s):  
Annamaria Barbagallo ◽  
Vincenzo Esposito

Abstract The mixed Cauchy–Neumann and Cauchy–Robin problems for a class of hyperbolic operators with double characteristics in presence of transition is investigated. Some a priori estimates in Sobolev spaces with negative indexes are proved. Subsequently, existence and uniqueness results for the mixed problems are obtained.


2015 ◽  
Vol 12 (03) ◽  
pp. 535-579 ◽  
Author(s):  
Enrico Bernardi ◽  
Antonio Bove ◽  
Vesselin Petkov

We study a class of third-order hyperbolic operators P in G = {(t, x): 0 ≤ t ≤ T, x ∈ U ⋐ ℝn} with triple characteristics at ρ = (0, x0, ξ), ξ ∈ ℝn ∖{0}. We consider the case when the fundamental matrix of the principal symbol of P at ρ has a couple of non-vanishing real eigenvalues. Such operators are called effectively hyperbolic. Ivrii introduced the conjecture that every effectively hyperbolic operator is strongly hyperbolic, that is the Cauchy problem for P + Q is locally well posed for any lower order terms Q. This conjecture has been solved for operators having at most double characteristics and for operators with triple characteristics in the case when the principal symbol admits a factorization. A strongly hyperbolic operator in G could have triple characteristics in G only for t = 0 or for t = T. We prove that the operators in our class are strongly hyperbolic if T is small enough. Our proof is based on energy estimates with a loss of regularity.


2004 ◽  
Vol 30 (2) ◽  
pp. 283-348 ◽  
Author(s):  
Kunihiko KAJITANI ◽  
Seiichiro WAKABAYASHI ◽  
Karen YAGDJIAN

Author(s):  
V. I. Korzyuk ◽  
Nguyen Van Vinh

This article considers a classical solution of the boundary problem for the four-order strictly hyperbolic equation with four different characteristics. Note that the well-posed statement of mixed problems for hyperbolic equations not only depends on the number of characteristics, but also on their location. The operator appearing in the equation involves a composition of first-order differential operators. The equation is defined in the half-strip of two independent variables. There are Cauchy’s conditions at the domain bottom and periodic conditions at other boundaries. Using the method of characteristics, the analytic solution of the considered problem is obtained. The uniqueness of the solution is proved. We have also noted that the solution in the whole given domain is a composition of the solutions obtained in some subdomains. Thus, for the obtained classical solution to possess required smoothness, the values of these piecewise solutions, as well as their derivatives up to the fourth order must coincide at the boundary of these subdomains. A classical solution is understood as a function that is defined everywhere at all closure points of a given domain and has all classical derivatives entering the equation and the conditions of the problem.


Sign in / Sign up

Export Citation Format

Share Document