On the fock space representation of occupations times for non reversible markov processes

Author(s):  
Yves Le Jan
2006 ◽  
Vol 13 (04) ◽  
pp. 415-426 ◽  
Author(s):  
P. Aniello ◽  
C. Lupo ◽  
M. Napolitano

In this paper, we investigate some mathematical structures underlying the physics of linear optical passive (LOP) devices. We show, in particular, that with the class of LOP transformations on N optical modes one can associate a unitary representation of U (N) in the N-mode Fock space, representation which can be decomposed into irreducible sub-representations living in the subspaces characterized by a fixed number of photons. These (sub-)representations can be classified using the theory of representations of semi-simple Lie algebras. The remarkable case where N = 3 is studied in detail.


1973 ◽  
Vol 1 (6) ◽  
pp. 1014-1025
Author(s):  
Michael L. Levitan ◽  
Lawrence H. Smolowitz

1992 ◽  
Vol 29 (01) ◽  
pp. 234-238 ◽  
Author(s):  
R. P. Littlejohn

A simple operation is described which inverts Bernoulli multiplication. It is used to define two classes of stationary reversible Markov processes with general marginal distribution. These are compared to the DAR(1) process of Jacobs and Lewis (1978). LJAR(1) is used to model ovulation rate time series.


2005 ◽  
Vol 20 (08) ◽  
pp. 613-622 ◽  
Author(s):  
ABDULLAH ALGIN ◽  
METIN ARIK

We construct a two-parameter deformed SUSY algebra by constructing SUSY generators which are bilinears of n (p,q)-deformed fermions covariant under the quantum group SU p/q(n) and n undeformed bosons. The Fock space representation of the algebra constructed is discussed and the total deformed Hamiltonian for such a system is obtained. Some physical applications of the quantum group covariant two-parameter deformed fermionic oscillator algebra are also considered.


Sign in / Sign up

Export Citation Format

Share Document