string theory
Recently Published Documents


TOTAL DOCUMENTS

3730
(FIVE YEARS 406)

H-INDEX

134
(FIVE YEARS 8)

Author(s):  
Andrea Fontanella ◽  
Juan Miguel Nieto Garcia

Abstract We find classical closed string solutions to the non-relativistic AdS$_5\times$S$^5$ string theory which are the analogue of the BMN and GKP solutions for the relativistic theory. We show that non-relativistic AdS$_5\times$S$^5$ string theory admits a $\mathbb{Z}_2$ orbifold symmetry which allows us to impose twisted boundary conditions. Among the solutions in the twisted sector, we find the one around which the semiclassical expansion in \href{https://arxiv.org/abs/2102.00008}{arXiv:2102.00008} takes place.


Author(s):  
Ben Hoare

Abstract In this pedagogical review we introduce systematic approaches to deforming integrable 2-dimensional sigma models. We use the integrable principal chiral model and the conformal Wess-Zumino-Witten model as our starting points and explore their Yang-Baxter and current-current deformations. There is an intricate web of relations between these models based on underlying algebraic structures and worldsheet dualities, which is highlighted throughout. We finish with a discussion of the generalisation to other symmetric integrable models, including some original results related to ZT cosets and their deformations, and the application to string theory. This review is based on notes written for lectures delivered at the school "Integrability, Dualities and Deformations," which ran from 23 to 27 August 2021 in Santiago de Compostela and virtually.


2022 ◽  
Author(s):  
Alessandro Tomasiello

String theory is a leading candidate for the unification of universal forces and matter, and one of its most striking predictions is the existence of small additional dimensions that have escaped detection so far. This book focuses on the geometry of these dimensions, beginning with the basics of the theory, the mathematical properties of spinors, and differential geometry. It further explores advanced techniques at the core of current research, such as G-structures and generalized complex geometry. Many significant classes of solutions to the theory's equations are studied in detail, from special holonomy and Sasaki–Einstein manifolds to their more recent generalizations involving fluxes for form fields. Various explicit examples are discussed, of interest to graduates and researchers.


2022 ◽  
Vol 128 (1) ◽  
Author(s):  
Mehmet Demirtas ◽  
Manki Kim ◽  
Liam McAllister ◽  
Jakob Moritz ◽  
Andres Rios-Tascon

Author(s):  
Lorenz Valentin Eberhardt

Abstract We construct a conformal field theory dual to string theory on AdS3 with pure NS-NS flux. It is given by a symmetric orbifold of a linear dilaton theory deformed by a marginal operator from the twist-2 sector. We compute two- and three-point functions on the CFT side to 4th order in conformal perturbation theory at large N. They agree with the string computation at genus 0, thus providing ample evidence for a duality. We also show that the full spectra of both short and long strings on the CFT and the string side match. The duality should be understood as perturbative in 1/N.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Ignatios Antoniadis ◽  
Osmin Lacombe ◽  
George K. Leontaris

Abstract We present an explicit string realisation of a cosmological inflationary scenario we proposed recently within the framework of type IIB flux compactifications in the presence of three magnetised D7-brane stacks. Inflation takes place around a metastable de Sitter vacuum. The inflaton is identified with the volume modulus and has a potential with a very shallow minimum near the maximum. Inflation ends due to the presence of “waterfall” fields that drive the evolution of the Universe from a nearby saddle point towards a global minimum with tuneable vacuum energy describing the present state of our Universe.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Keiya Ishiguro ◽  
Tatsuo Kobayashi ◽  
Hajime Otsuka

Abstract We examine a common origin of four-dimensional flavor, CP, and U(1)R symmetries in the context of heterotic string theory with standard embedding. We find that flavor and U(1)R symmetries are unified into the Sp(2h + 2, ℂ) modular symmetries of Calabi-Yau threefolds with h being the number of moduli fields. Together with the $$ {\mathbb{Z}}_2^{\mathrm{CP}} $$ ℤ 2 CP CP symmetry, they are enhanced to GSp(2h + 2, ℂ) ≃ Sp(2h + 2, ℂ) ⋊ $$ {\mathbb{Z}}_2^{\mathrm{CP}} $$ ℤ 2 CP generalized symplectic modular symmetry. We exemplify the S3, S4, T′, S9 non-Abelian flavor symmetries on explicit toroidal orbifolds with and without resolutions and ℤ2, S4 flavor symmetries on three-parameter examples of Calabi-Yau threefolds. Thus, non-trivial flavor symmetries appear in not only the exact orbifold limit but also a certain class of Calabi-Yau three-folds. These flavor symmetries are further enlarged to non-Abelian discrete groups by the CP symmetry.


Sign in / Sign up

Export Citation Format

Share Document