Geometric category and Lusternik-Schnirelmann category

Author(s):  
Luis Montejano



2017 ◽  
Vol 8 (1) ◽  
pp. 707-714 ◽  
Author(s):  
Lorenzo Brasco ◽  
Giovanni Franzina

Abstract We construct an open set {\Omega\subset\mathbb{R}^{N}} on which an eigenvalue problem for the p-Laplacian has no isolated first eigenvalue and the spectrum is not discrete. The same example shows that the usual Lusternik–Schnirelmann minimax construction does not exhaust the whole spectrum of this eigenvalue problem.



2002 ◽  
Vol 65 (03) ◽  
pp. 745-756 ◽  
Author(s):  
HELLEN COLMAN ◽  
ENRIQUE MACIAS-VIRGÓS




2018 ◽  
Vol 61 (03) ◽  
pp. 693-704
Author(s):  
KATSUYA YOKOI

AbstractWe study Lusternik–Schnirelmann type categories for isolated invariant sets by the use of the discrete Conley index.



2009 ◽  
Vol 11 (2) ◽  
pp. 275-307
Author(s):  
Manfred Stelzer






2011 ◽  
Vol 152 (2) ◽  
pp. 223-249 ◽  
Author(s):  
MANUEL CÁRDENAS ◽  
FRANCISCO F. LASHERAS ◽  
ANTONIO QUINTERO

AbstractWe give sufficient conditions for the existence of detecting elements for the Lusternik–Schnirelmann category in proper homotopy. As an application we determine the proper LS category of some semistable one-ended open 3-manifolds.





Sign in / Sign up

Export Citation Format

Share Document