lie groupoid
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Fabrizio Pugliese ◽  
Giovanni Sparano ◽  
Luca Vitagliano

We define and study multiplicative connections in the tangent bundle of a Lie groupoid. Multiplicative connections are linear connections satisfying an appropriate compatibility with the groupoid structure. Our definition is natural in the sense that a linear connection on a Lie groupoid is multiplicative if and only if its torsion is a multiplicative tensor in the sense of Bursztyn–Drummond [Lie theory of multiplicative tensors, Mat. Ann. 375 (2019) 1489–1554, arXiv:1705.08579] and its geodesic spray is a multiplicative vector field. We identify the obstruction to the existence of a multiplicative connection. We also discuss the infinitesimal version of multiplicative connections in the tangent bundle, that we call infinitesimally multiplicative (IM) connections and we prove an integration theorem for IM connections. Finally, we present a few toy examples.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Fabrizio Pugliese ◽  
Giovanni Sparano ◽  
Luca Vitagliano

Abstract We define a new notion of fiberwise linear differential operator on the total space of a vector bundle E. Our main result is that fiberwise linear differential operators on E are equivalent to (polynomial) derivations of an appropriate line bundle over E ∗ {E^{\ast}} . We believe this might represent a first step towards a definition of multiplicative (resp. infinitesimally multiplicative) differential operators on a Lie groupoid (resp. a Lie algebroid). We also discuss the linearization of a differential operator around a submanifold.


Author(s):  
Lachlan Ewen MacDonald ◽  

We define a notion of connection in a fibre bundle that is compatible with a singular foliation of the base. Fibre bundles equipped with such connections are in plentiful supply, arising naturally for any Lie groupoid-equivariant bundle, and simultaneously generalising regularly foliated bundles in the sense of Kamber-Tondeur and singular foliations. We define hierarchies of diffeological holonomy groupoids associated to such bundles, which arise from the parallel transport of jet/germinal conservation laws. We show that the groupoids associated in this manner to trivial singularly foliated bundles are quotients of Androulidakis-Skandalis holonomy groupoids, which coincide with Androulidakis-Skandalis holonomy groupoids in the regular case. Finally we prove functoriality of all our constructions under appropriate morphisms.


2021 ◽  
Vol 13 (3) ◽  
pp. 403
Author(s):  
Madeleine Jotz Lean ◽  
Kirill C. H. Mackenzie

<p style='text-indent:20px;'>The core diagram of a double Lie algebroid consists of the core of the double Lie algebroid, together with the two core-anchor maps to the sides of the double Lie algebroid. If these two core-anchors are surjective, then the double Lie algebroid and its core diagram are called <i>transitive</i>. This paper establishes an equivalence between transitive double Lie algebroids, and transitive core diagrams over a fixed base manifold. In other words, it proves that a transitive double Lie algebroid is completely determined by its core diagram.</p><p style='text-indent:20px;'>The comma double Lie algebroid associated to a morphism of Lie algebroids is defined. If the latter morphism is one of the core-anchors of a transitive core diagram, then the comma double algebroid can be quotiented out by the second core-anchor, yielding a transitive double Lie algebroid, which is the one that is equivalent to the transitive core diagram.</p><p style='text-indent:20px;'>Brown's and Mackenzie's equivalence of transitive core diagrams (of Lie groupoids) with transitive double Lie groupoids is then used in order to show that a transitive double Lie algebroid with integrable sides and core is automatically integrable to a transitive double Lie groupoid.</p>


2020 ◽  
Vol 13 (4) ◽  
pp. 116-125
Author(s):  
Jose R. Oliveira

Based on the isomorphism between Lie algebroid cohomology and piecewise smooth cohomology of a transitive Lie algebroid, it is proved that the Rham cohomology of a locally trivial Lie groupoid G on a smooth manifold M is isomorphic to the piecewise Rham cohomology of G, in which G and M are manifolds without boundary and M is smoothly triangulated by a finite simplicial complex K such that, for each simplex ∆ of K, the inverse images of ∆ by the source and target mappings of G are transverses submanifolds in the ambient space G. As a consequence, it is shown that the piecewise de Rham cohomology of G does not depend on the triangulation of the base.


Author(s):  
Francesco Bonechi ◽  
Nicola Ciccoli ◽  
Camille Laurent-Gengoux ◽  
Ping Xu

Abstract The purpose of this paper is to investigate $(+1)$-shifted Poisson structures in the context of differential geometry. The relevant notion is that of $(+1)$-shifted Poisson structures on differentiable stacks. More precisely, we develop the notion of the Morita equivalence of quasi-Poisson groupoids. Thus, isomorphism classes of $(+1)$-shifted Poisson stacks correspond to Morita equivalence classes of quasi-Poisson groupoids. In the process, we carry out the following program, which is of independent interest: (1) We introduce a ${\mathbb{Z}}$-graded Lie 2-algebra of polyvector fields on a given Lie groupoid and prove that its homotopy equivalence class is invariant under the Morita equivalence of Lie groupoids, and thus they can be considered to be polyvector fields on the corresponding differentiable stack ${\mathfrak{X}}$. It turns out that $(+1)$-shifted Poisson structures on ${\mathfrak{X}}$ correspond exactly to elements of the Maurer–Cartan moduli set of the corresponding dgla. (2) We introduce the notion of the tangent complex $T_{\mathfrak{X}}$ and the cotangent complex $L_{\mathfrak{X}}$ of a differentiable stack ${\mathfrak{X}}$ in terms of any Lie groupoid $\Gamma{\rightrightarrows } M$ representing ${\mathfrak{X}}$. They correspond to a homotopy class of 2-term homotopy $\Gamma$-modules $A[1]\rightarrow TM$ and $T^{\vee } M\rightarrow A^{\vee }[-1]$, respectively. Relying on the tools of theory of VB-groupoids including homotopy and Morita equivalence of VB-groupoids, we prove that a $(+1)$-shifted Poisson structure on a differentiable stack ${\mathfrak{X}}$ defines a morphism ${L_{\mathfrak{X}}}[1]\to{T_{\mathfrak{X}}}$.


2020 ◽  
Vol 2020 (769) ◽  
pp. 35-53
Author(s):  
David Martínez Torres

AbstractWe show that any proper Lie groupoid admits a compatible real analytic structure. Our proof hinges on a Weyl unitary trick of sorts for appropriate local holomorphic groupoids.


2020 ◽  
pp. 1-45
Author(s):  
Denis Perrot

We develop a local index theory for a class of operators associated with non-proper and non-isometric actions of Lie groupoids on smooth submersions. Such actions imply the existence of a short exact sequence of algebras, relating these operators to their non-commutative symbol. We then compute the connecting map induced by this extension on periodic cyclic cohomology. When cyclic cohomology is localized at appropriate isotropic submanifolds of the groupoid in question, we find that the connecting map is expressed in terms of an explicit Wodzicki-type residue formula, which involves the jets of non-commutative symbols at the fixed-point set of the action.


2020 ◽  
Vol 27 (03) ◽  
pp. 2050015
Author(s):  
Katarzyna Grabowska ◽  
Janusz Grabowski ◽  
Marek Kuś ◽  
Giuseppe Marmo

We use the general setting for contrast (potential) functions in statistical and information geometry provided by Lie groupoids and Lie algebroids. The contrast functions are defined on Lie groupoids and give rise to two-forms and three-forms on the corresponding Lie algebroid. We study the case when the two-form is degenerate and show how in sufficiently regular cases one reduces it to a pseudometric structures. Transversal Levi-Civita connections for Riemannian foliations are generalized to the Lie groupoid/Lie algebroid case.


Sign in / Sign up

Export Citation Format

Share Document