Jones polynomial and the crossing number of links

Author(s):  
Ying-qing Wu
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Maciej Mroczkowski

AbstractWe consider arrow diagrams of links in $$S^3$$ S 3 and define k-moves on such diagrams, for any $$k\in \mathbb {N}$$ k ∈ N . We study the equivalence classes of links in $$S^3$$ S 3 up to k-moves. For $$k=2$$ k = 2 , we show that any two knots are equivalent, whereas it is not true for links. We show that the Jones polynomial at a k-th primitive root of unity is unchanged by a k-move, when k is odd. It is multiplied by $$-1$$ - 1 , when k is even. It follows that, for any $$k\ge 5$$ k ≥ 5 , there are infinitely many classes of knots modulo k-moves. We use these results to study the Hopf crossing number. In particular, we show that it is unbounded for some families of knots. We also interpret k-moves as some identifications between links in different lens spaces $$L_{p,1}$$ L p , 1 .


2000 ◽  
Vol 09 (07) ◽  
pp. 907-916 ◽  
Author(s):  
MASAO HARA ◽  
SEI'ICHI TANI ◽  
MAKOTO YAMAMOTO

We calculate the highest and the lowest degrees of the Kauffman bracket polynomials of certain inadequate pretzel links and show that there is a knot K such that c(K) – r _ deg VK=k for any nonnegative integer k, where c(K) is the crossing number of K and r _ deg VK is the reduced degree of the Jones polynomial VK of K.


2020 ◽  
Vol 31 (13) ◽  
pp. 2050111
Author(s):  
Noboru Ito ◽  
Yusuke Takimura

In this paper, we obtain the crosscap number of any alternating knots by using our recently-introduced diagrammatic knot invariant (Theorem 1). The proof is given by properties of chord diagrams (Kindred proved Theorem 1 independently via other techniques). For non-alternating knots, we give Theorem 2 that generalizes Theorem 1. We also improve known formulas to obtain upper bounds of the crosscap number of knots (alternating or non-alternating) (Theorem 3). As a corollary, this paper connects crosscap numbers and our invariant with other knot invariants such as the Jones polynomial, twist number, crossing number, and hyperbolic volume (Corollaries 1–7). In Appendix A, using Theorem 1, we complete giving the crosscap numbers of the alternating knots with up to 11 crossings including those of the previously unknown values for [Formula: see text] knots (Tables A.1).


2010 ◽  
Vol 19 (07) ◽  
pp. 961-974
Author(s):  
YONGJU BAE ◽  
HYE SOOK LEE ◽  
CHAN-YOUNG PARK

In this paper, we prove that an adequate virtual link diagram of an adequate virtual link has minimal real crossing number.


10.37236/1748 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Nagi H. Nahas

The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.


2020 ◽  
Vol 9 (8) ◽  
pp. 5901-5908
Author(s):  
M. Sagaya Nathan ◽  
J. Ravi Sankar
Keyword(s):  

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 925
Author(s):  
Michal Staš

The crossing number cr ( G ) of a graph G is the minimum number of edge crossings over all drawings of G in the plane. The main goal of the paper is to state the crossing number of the join product K 2 , 3 + C n for the complete bipartite graph K 2 , 3 , where C n is the cycle on n vertices. In the proofs, the idea of a minimum number of crossings between two distinct configurations in the various forms of arithmetic means will be extended. Finally, adding one more edge to the graph K 2 , 3 , we also offer the crossing number of the join product of one other graph with the cycle C n .


Author(s):  
János Barát ◽  
Géza Tóth

AbstractThe crossing number of a graph G is the minimum number of edge crossings over all drawings of G in the plane. A graph G is k-crossing-critical if its crossing number is at least k, but if we remove any edge of G, its crossing number drops below k. There are examples of k-crossing-critical graphs that do not have drawings with exactly k crossings. Richter and Thomassen proved in 1993 that if G is k-crossing-critical, then its crossing number is at most $$2.5\, k+16$$ 2.5 k + 16 . We improve this bound to $$2k+8\sqrt{k}+47$$ 2 k + 8 k + 47 .


Author(s):  
Heather M Russell ◽  
Julianna Tymoczko

Abstract Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $\mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (e.g., Kazhdan–Lusztig polynomials). By ”flattening” the braiding maps, webs can also be viewed as the basis elements of a symmetric group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, which measure depths of regions inside the web. As an application, we resolve an open conjecture that the change of basis between the so-called Specht basis and web basis of this symmetric group representation is unitriangular for $\mathfrak{sl}_3$-webs ([ 33] and [ 29].) We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $\mathfrak{sl}_2$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others [ 12, 17, 29, 33]. We also prove that though the new partial order for $\mathfrak{sl}_3$-webs is a refinement of the previously studied tableau order, the two partial orders do not agree for $\mathfrak{sl}_3$.


Sign in / Sign up

Export Citation Format

Share Document