Roots of haar measure and topological hamiltonian groups

Author(s):  
Gerhard Turnwald
2014 ◽  
Vol 51 (4) ◽  
pp. 454-465
Author(s):  
Lu-Ming Shen ◽  
Huiping Jing

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q ((X^{ - 1} ))$$ \end{document} denote the formal field of all formal Laurent series x = Σ n=ν∞anX−n in an indeterminate X, with coefficients an lying in a given finite field \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}. For any \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} with deg β > 1, it is known that for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$x \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} (with respect to the Haar measure), x is β-normal. In this paper, we show the inverse direction, i.e., for any x, for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document}, x is β-normal.


Author(s):  
ALIREZA ABDOLLAHI ◽  
MEISAM SOLEIMANI MALEKAN

Abstract The following question is proposed by Martino, Tointon, Valiunas and Ventura in [4, question 1·20]: Let G be a compact group, and suppose that \[\mathcal{N}_k(G) = \{(x_1,\dots,x_{k+1}) \in G^{k+1} \;|\; [x_1,\dots, x_{k+1}] = 1\}\] has positive Haar measure in $G^{k+1}$ . Does G have an open k-step nilpotent subgroup? We give a positive answer for $k = 2$ .


2004 ◽  
Vol 4 (3) ◽  
pp. 229-235
Author(s):  
D. Gavinsky

The Hidden Subgroup Problem (HSP) has been widely studied in the context of quantum computing and is known to be efficiently solvable for Abelian groups, yet appears to be difficult for many non-Abelian ones. An efficient algorithm for the HSP over a group \f G\ runs in time polynomial in \f{n\deq\log|G|.} For any subgroup \f H\ of \f G, let \f{N(H)} denote the normalizer of \f H. Let \MG\ denote the intersection of all normalizers in \f G (i.e., \f{\MG=\cap_{H\leq G}N(H)}). \MG\ is always a subgroup of \f G and the index \f{[G:\MG]} can be taken as a measure of ``how non-Abelian'' \f G is (\f{[G:\MG] = 1} for Abelian groups). This measure was considered by Grigni, Schulman, Vazirani and Vazirani, who showed that whenever \f{[G:\MG]\in\exp(O(\log^{1/2}n))} the corresponding HSP can be solved efficiently (under certain assumptions). We show that whenever \f{[G:\MG]\in\poly(n)} the corresponding HSP can be solved efficiently, under the same assumptions (actually, we solve a slightly more general case of the HSP and also show that some assumptions may be relaxed).


2011 ◽  
Vol 54 (2) ◽  
pp. 411-422
Author(s):  
Jaroslav Hančl ◽  
Radhakrishnan Nair ◽  
Simona Pulcerova ◽  
Jan Šustek

AbstractContinuing earlier studies over the real numbers, we study the expressible set of a sequence A = (an)n≥1 of p-adic numbers, which we define to be the set EpA = {∑n≥1ancn: cn ∈ ℕ}. We show that in certain circumstances we can calculate the Haar measure of EpA exactly. It turns out that our results extend to sequences of matrices with p-adic entries, so this is the setting in which we work.


1986 ◽  
pp. 201-227
Author(s):  
Michael D. Fried ◽  
Moshe Jarden
Keyword(s):  

2004 ◽  
pp. 1-94
Author(s):  
Nicolas Bourbaki
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document