scholarly journals Extensions of Haar Measure for Compact Connected Abelian Groups

1965 ◽  
Vol 68 ◽  
pp. 190-207 ◽  
Author(s):  
Gerald. L. Itzkowitz
Keyword(s):  
1978 ◽  
Vol 30 (5) ◽  
pp. 915-925
Author(s):  
M. Rains

Let G be a compact abelian group and form the spaces LP(G) with respect to the normalized Haar measure on G.


1999 ◽  
Vol 6 (4) ◽  
pp. 379-394
Author(s):  
D. Ugulava

Abstract Questions of approximative nature are considered for a space of functions 𝐿𝑝(𝐺, μ), 1 ≤ 𝑝 ≤ ∞, defined on a locally compact abelian Hausdorff group 𝐺 with Haar measure μ. The approximating subspaces which are analogs of the space of exponential type entire functions are introduced.


1992 ◽  
Vol 111 (1) ◽  
pp. 113-126
Author(s):  
Nakhl Asmar ◽  
Saleem Watson ◽  
Saleem Watson

Let G denote a compact connected abelian group with character group and normalized Haar measure . As a consequence of the duality theorems (11, theorem 2518), is torsion-free and hence can be ordered. That is, there is a sub-semigroup P of such that


1981 ◽  
Vol 33 (3) ◽  
pp. 664-670 ◽  
Author(s):  
M. A. Khan

In [4], Edwin Hewitt denned a-rich LCA (i.e., locally compact abelian) groups and classified them by their algebraic structure. In this paper, we study LCA groups with some properties related to a-richness. We define an LCA group G to be power-rich if for every open neighbourhood V of the identity in G and for every integer n > 1, λ(nV) > 0, where nV = {nx ∈ G : x ∈ V} and λ is a Haar measure on G. G is power-meagre if for every integer n > 1, there is an open neighbourhood V of the identity, possibly depending on n, such that λ(nV) = 0. G is power-deficient if for every integer n > 1 and for every open neighbourhood V of the identity such that is compact, . G is dual power-rich if both G and Ĝ are power-rich. We define dual power-meagre and dual power-deficient groups similarly.


2014 ◽  
Vol 51 (4) ◽  
pp. 454-465
Author(s):  
Lu-Ming Shen ◽  
Huiping Jing

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q ((X^{ - 1} ))$$ \end{document} denote the formal field of all formal Laurent series x = Σ n=ν∞anX−n in an indeterminate X, with coefficients an lying in a given finite field \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}. For any \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} with deg β > 1, it is known that for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$x \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} (with respect to the Haar measure), x is β-normal. In this paper, we show the inverse direction, i.e., for any x, for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document}, x is β-normal.


Sign in / Sign up

Export Citation Format

Share Document