Iterated forcing with RCS (revised countable support)

1988 ◽  
Vol 53 (4) ◽  
pp. 1188-1207 ◽  
Author(s):  
Jaime I. Ihoda ◽  
Saharon Shelah

AbstractWe define the notion of Souslin forcing, and we prove that some properties are preserved under iteration. We define a weaker form of Martin's axiom, namely , and using the results on Souslin forcing we show that is consistent with the existence of a Souslin tree and with the splitting number s = ℵ1. We prove that proves the additivity of measure. Also we introduce the notion of proper Souslin forcing, and we prove that this property is preserved under countable support iterated forcing. We use these results to show that ZFC + there is an inaccessible cardinal is equiconsistent with ZFC + the Borel conjecture + -measurability.


2001 ◽  
Vol 66 (4) ◽  
pp. 1865-1883 ◽  
Author(s):  
Chaz Schlindwein

One of the main goals in the theory of forcing iteration is to formulate preservation theorems for not collapsing ω1 which are as general as possible. This line leads from c.c.c. forcings using finite support iterations to Axiom A forcings and proper forcings using countable support iterations to semi-proper forcings using revised countable support iterations, and more recently, in work of Shelah, to yet more general classes of posets. In this paper we concentrate on a special case of the very general iteration theorem of Shelah from [5, chapter XV]. The class of posets handled by this theorem includes all semi-proper posets and also includes, among others, Namba forcing.In [5, chapter XV] Shelah shows that, roughly, revised countable support forcing iterations in which the constituent posets are either semi-proper or Namba forcing or P[W] (the forcing for collapsing a stationary co-stationary subset ofwith countable conditions) do not collapse ℵ1. The iteration must contain sufficiently many cardinal collapses, for example, Levy collapses. The most easily quotable combinatorial application is the consistency (relative to a Mahlo cardinal) of ZFC + CH fails + whenever A ∪ B = ω2 then one of A or B contains an uncountable sequentially closed subset. The iteration Shelah uses to construct this model is built using P[W] to “attack” potential counterexamples, Levy collapses to ensure that the cardinals collapsed by the various P[W]'s are sufficiently well separated, and Cohen forcings to ensure the failure of CH in the final model.In this paper we give details of the iteration theorem, but we do not address the combinatorial applications such as the one quoted above.These theorems from [5, chapter XV] are closely related to earlier work of Shelah [5, chapter XI], which dealt with iterated Namba and P[W] without allowing arbitrary semi-proper forcings to be included in the iteration. By allowing the inclusion of semi-proper forcings, [5, chapter XV] generalizes the conjunction of [5, Theorem XI.3.6] with [5, Conclusion XI.6.7].


1978 ◽  
Vol 69 (2) ◽  
pp. 314 ◽  
Author(s):  
Judy Roitman
Keyword(s):  

2007 ◽  
Vol 5 ◽  
Author(s):  
Paul Corazza

We develop the machinery for performing forcing over an arbitrary (possibly non-wellfounded) model of set theory. For consistency results, this machinery is unnecessary since such results can always be legitimately obtained by assuming that the ground model is (countable) transitive. However, for establishing properties of a given (possibly non-wellfounded) model, the fully developed machinery of forcing as a means to produce new related models can be useful. We develop forcing through iterated forcing, paralleling the standard steps of presentation found in [19] and [14].


1987 ◽  
Vol 29 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Saharon Shelah
Keyword(s):  

Author(s):  
Todd Eisworth ◽  
Justin Tatch Moore ◽  
David Milovich

1987 ◽  
Vol 60 (3) ◽  
pp. 345-380 ◽  
Author(s):  
Saharon Shelah

Sign in / Sign up

Export Citation Format

Share Document