The Australasian Journal of Logic
Latest Publications


TOTAL DOCUMENTS

198
(FIVE YEARS 55)

H-INDEX

8
(FIVE YEARS 2)

Published By Victoria University Of Wellington Library

1448-5052

2021 ◽  
Vol 18 (6) ◽  
pp. 599-615
Author(s):  
Eoin Moore

Hybrid deduction-refuation systems are presented for four first-degree entailment based logics. The hybrid systems are shown to be deductively and refutationally sound with respect to their logics. The proofs of completeness are presented in a uniform way. The paper builds on work by Goranko, who presented a deductively and refutationally sound and complete hybrid system for classical logic.


2021 ◽  
Vol 18 (6) ◽  
pp. 645-656
Author(s):  
Shay Allen Logan

Relevant logics infamously have the property that they only validate a conditional when some propositional variable is shared between its antecedent and consequent. This property has been strengthened in a variety of ways over the last half-century. Two of the more famous of these strengthenings are the strong variable sharing property and the depth relevance property. In this paper I demonstrate that an appropriate class of relevant logics has a property that might naturally be characterized as the supremum of these two properties. I also show how to use this fact to demonstrate that these logics seem to be constructive in previously unknown ways.


2021 ◽  
Vol 18 (6) ◽  
pp. 616-644
Author(s):  
Melvin Fitting
Keyword(s):  

This paper continues my earlier work, which showed there is a broad family of propositional many valued logics that have a strict/tolerant counterpart.  Here we generalize those results from propositional to a range of both modal and quantified many valued logics, providing strict/tolerant counterparts for all.  This paper is not self-contained; some results from earlier papers are called on, and are not reproved here.  The key new machinery added to earlier work, allowing modalities and quantifiers to be handled in similar ways, is the central use of bilattices that are function spaces, and more generally lattices that are function spaces.  Two versions of the central proofs are considered, one at length and the other in outline.


2021 ◽  
Vol 18 (5) ◽  
pp. 428-446
Author(s):  
Thomas Macaulay Ferguson ◽  
Elisangela Ramirez-Camara

Meyer and Mortensen’s Alien Intruder Theorem includes the extraor- dinary observation that the rationals can be extended to a model of the relevant arithmetic R♯, thereby serving as integers themselves. Al- though the mysteriousness of this observation is acknowledged, little is done to explain why such rationals-as-integers exist or how they operate. In this paper, we show that Meyer and Mortensen’s models can be identified with a class of ultraproducts of finite models of R♯, providing insights into some of the more mysterious phenomena of the rational models.


2021 ◽  
Vol 18 (5) ◽  
pp. 289-379
Author(s):  
Robert Meyer

This paper offers an elementary proof that formal arithmetic is consistent. The system that will be proved consistent is a first-order theory R♯, based as usual on the Peano postulates and the recursion equations for + and ×. However, the reasoning will apply to any axiomatizable extension of R♯ got by adding classical arithmetical truths. Moreover, it will continue to apply through a large range of variation of the un- derlying logic of R♯, while on a simple and straightforward translation, the classical first-order theory P♯ of Peano arithmetic turns out to be an exact subsystem of R♯. Since the reasoning is elementary, it is formalizable within R♯ itself; i.e., we can actually demonstrate within R♯ (or within P♯, if we care) a statement that, in a natural fashion, asserts the consistency of R♯ itself. The reader is unlikely to have missed the significance of the remarks just made. In plain English, this paper repeals Goedel’s famous second theorem. (That’s the one that asserts that sufficiently strong systems are inadequate to demonstrate their own consistency.) That theorem (or at least the significance usually claimed for it) was a mis- take—a subtle and understandable mistake, perhaps, but a mistake nonetheless. Accordingly, this paper reinstates the formal program which is often taken to have been blasted away by Goedel’s theorems— namely, the Hilbert program of demonstrating, by methods that everybody can recognize as effective and finitary, that intuitive mathematics is reliable. Indeed, the present consistency proof for arithmetic will be recognized as correct by anyone who can count to 3. (So much, indeed, for the claim that the reliability of arithmetic rests on transfinite induction up to ε0, and for the incredible mythology that underlies it.)


2021 ◽  
Vol 18 (5) ◽  
pp. 569-596
Author(s):  
Zach Weber

In The Consistency of Arithmetic and elsewhere, Meyer claims to “repeal” Goedel’s second incompleteness theorem. In this paper, I review his argument, and then consider two ways of understanding it: from the perspective of mathematical pluralism and monism, respectively. Is relevant arithmetic just another legitimate practice among many, or is it a rival of its classical counterpart—a corrective to Goedel, setting us back on the path to the (One) True Arithmetic? To help answer, I sketch a few worked examples from relevant mathematics, to see what a non-classical (re)formulation of mathematics might look like in practice. I conclude that, while it is unlikely that relevant arithmetic describes past and present mathematical practice, and so might be most acceptable as a pluralist enterprise, it may yet prescribe a more monistic future venture.


2021 ◽  
Vol 18 (5) ◽  
pp. 146-149
Author(s):  
Thomas Macaulay Ferguson ◽  
Graham Priest

This is a bibliography of R.K. Meyer's published articles on relevant arithmetic.


2021 ◽  
Vol 18 (5) ◽  
pp. 447-472
Author(s):  
Ross Brady

We assess Meyer’s formalization of arithmetic in his [21], based on the strong relevant logic R and compare this with arithmetic based on a suitable logic of meaning containment, which was developed in Brady [7]. We argue in favour of the latter as it better captures the key logical concepts of meaning and truth in arithmetic. We also contrast the two approaches to classical recapture, again favouring our approach in [7]. We then consider our previous development of Peano arithmetic including primitive recursive functions, finally extending this work to that of general recursion.


2021 ◽  
Vol 18 (5) ◽  
pp. 154-288
Author(s):  
Robert Meyer

The purpose of this paper is to formulate first-order Peano arithmetic within the resources of relevant logic, and to demonstrate certain properties of the system thus formulated. Striking among these properties are the facts that (1) it is trivial that relevant arithmetic is absolutely consistent, but (2) classical first-order Peano arithmetic is straightforwardly contained in relevant arithmetic. Under (1), I shall show in particular that 0 = 1 is a non-theorem of relevant arithmetic; this, of course, is exactly the formula whose unprovability was sought in the Hilbert program for proving arithmetic consistent. Under (2), I shall exhibit the requisite translation, drawing some Goedelian conclusions therefrom. Left open, however, is the critical problem whether Ackermann’s rule γ is admissible for theories of relevant arithmetic. The particular system of relevant Peano arithmetic featured in this paper shall be called R♯. Its logical base shall be the system R of relevant implication, taken in its first-order form RQ. Among other Peano arithmetics we shall consider here in particular the systems C♯, J♯, and RM3♯; these are based respectively on the classical logic C, the intuitionistic logic J, and the Sobocinski-Dunn semi-relevant logic RM3. And another feature of the paper will be the presentation of a system of natural deduction for R♯, along lines valid for first-order relevant theories in general. This formulation of R♯ makes it possible to construct relevantly valid arithmetical deductions in an easy and natural way; it is based on, but is in some respects more convenient than, the natural deduction formulations for relevant logics developed by Anderson and Belnap in Entailment.


2021 ◽  
Vol 18 (5) ◽  
pp. 473-502
Author(s):  
Andrew Tedder

The standard style of argument used to prove that a theory is unde- cidable relies on certain consistency assumptions, usually that some fragment or other is negation consistent. In a non-paraconsistent set- ting, this amounts to an assumption that the theory is non-trivial, but these diverge when theories are couched in paraconsistent logics. Furthermore, there are general methods for constructing inconsistent models of arithmetic from consistent models, and the theories of such inconsistent models seem likely to differ in terms of complexity. In this paper, I begin to explore this terrain, working, particularly, in incon- sistent theories of arithmetic couched in three-valued paraconsistent logics which have strong (i.e. detaching) conditionals.


Sign in / Sign up

Export Citation Format

Share Document