Shelah's work on non-semi-proper iterations, II

2001 ◽  
Vol 66 (4) ◽  
pp. 1865-1883 ◽  
Author(s):  
Chaz Schlindwein

One of the main goals in the theory of forcing iteration is to formulate preservation theorems for not collapsing ω1 which are as general as possible. This line leads from c.c.c. forcings using finite support iterations to Axiom A forcings and proper forcings using countable support iterations to semi-proper forcings using revised countable support iterations, and more recently, in work of Shelah, to yet more general classes of posets. In this paper we concentrate on a special case of the very general iteration theorem of Shelah from [5, chapter XV]. The class of posets handled by this theorem includes all semi-proper posets and also includes, among others, Namba forcing.In [5, chapter XV] Shelah shows that, roughly, revised countable support forcing iterations in which the constituent posets are either semi-proper or Namba forcing or P[W] (the forcing for collapsing a stationary co-stationary subset ofwith countable conditions) do not collapse ℵ1. The iteration must contain sufficiently many cardinal collapses, for example, Levy collapses. The most easily quotable combinatorial application is the consistency (relative to a Mahlo cardinal) of ZFC + CH fails + whenever A ∪ B = ω2 then one of A or B contains an uncountable sequentially closed subset. The iteration Shelah uses to construct this model is built using P[W] to “attack” potential counterexamples, Levy collapses to ensure that the cardinals collapsed by the various P[W]'s are sufficiently well separated, and Cohen forcings to ensure the failure of CH in the final model.In this paper we give details of the iteration theorem, but we do not address the combinatorial applications such as the one quoted above.These theorems from [5, chapter XV] are closely related to earlier work of Shelah [5, chapter XI], which dealt with iterated Namba and P[W] without allowing arbitrary semi-proper forcings to be included in the iteration. By allowing the inclusion of semi-proper forcings, [5, chapter XV] generalizes the conjunction of [5, Theorem XI.3.6] with [5, Conclusion XI.6.7].

2019 ◽  
Vol 84 (02) ◽  
pp. 684-703
Author(s):  
THOMAS GILTON ◽  
JOHN KRUEGER

AbstractWe prove from the existence of a Mahlo cardinal the consistency of the statement that 2ω = ω3 holds and every stationary subset of ${\omega _2}\mathop \cap \nolimits {\rm{cof}}\left( \omega \right)$ reflects to an ordinal less than ω2 with cofinality ω1.


1982 ◽  
Vol 25 (2) ◽  
pp. 173-181 ◽  
Author(s):  
W. A. Light ◽  
J. H. McCabe ◽  
G. M. Phillips ◽  
E. W. Cheney

We shall study a special case of the following abstract approximation problem: givena normed linear space E and two subspaces, M1 and M2, of E, we seek to approximate f ∈ E by elements in the sum of M1 and M2. In particular, we might ask whether closest points to f from M = M1 + M2 exist, and if so, how they are characterised. If we can define proximity maps p1 and p2 for M1 and M2, respectively, then an algorithm analogous to the one given by Diliberto and Straus [4] can be defined by the formulae


1983 ◽  
Vol 48 (3) ◽  
pp. 714-723 ◽  
Author(s):  
Matthew Foreman

In this paper we consider the special case of the Banach-Mazur game played on a topological space when the space also has an underlying Boolean Algebra structure. This case was first studied by Jech [2]. The version of the Banach-Mazur game we will play is the following game played on the Boolean algebra:Players I and II alternate moves playing a descending sequence of elements of a Boolean algebra ℬ.Player II wins the game iff Πi∈ωbi ≠ 0. Jech first considered these games and showed:Theorem (Jech [2]). ℬ is (ω1, ∞)-distributive iff player I does not have a winning strategy in the game played on ℬ.If ℬ has a dense ω-closed subset then it is easy to see that player II has a winning strategy in this game. This paper establishes a partial converse to this, namely it gives cardinality conditions on ℬ under which II having a winning strategy implies ω-closure.In the course of proving the converse, we consider games of length > ω and generalize Jech's theorem to these games. Finally we present an example due to C. Gray that stands in counterpoint to the theorems in this paper.In this section we give a few basis definitions and explain our notation. These definitions are all standard.


1995 ◽  
Vol 118 (3) ◽  
pp. 449-466 ◽  
Author(s):  
Ralph Stöhr

In this paper we study the homology of groups with coefficients in metabelian Lie powers, and apply the results to obtain information about elements of finite order in certain free central extensions of groups. Perhaps the most prominent example to which our results apply is the relatively free groupwhere Fd is the (absolutely) free group of rank d. Thus Fd(Bc) is the free group of rank d in the variety Bc of all groups which are both centre-by-(nilpotent of class ≤ c − 1)-by-abelian and soluble of derived length ≤ 3. It was pointed out in [1] that the order of any torsion element in Fd(Bc) divides c if c is odd and 2c if c is even. This, however, is a conditional result as it does not answer the question of whether or not there are any torsion elements in (1·1). Up to now, this question had only been answered in case when c is a prime number [1] or c = 4 [8]. In these cases Fd (Bc) is torsion-free if d ≤ 3, and elements of finite order do occur in Fd(Bc) if d ≥ 4. Moreover, the torsion elements in Fd(Bc) form a subgroup, and the precise structure of this torsion subgroup was exhibited in [1] in the case when c is a prime and in [8] for c = 4. In the present paper we add to this knowledge. On the one hand, we show that for any prime p dividing c the group Fd(Bc) has no elements of order p for all d up to a certain upper bound, which takes arbitrarily large values as c varies over all multiples of p. On the other hand, we show that for prime powers does contain elements of order p whenever d ≥ 4. Finally, we exhibit the precise structure of the p-torsion subgroup of when p ≠ 2. Precise statements are given below (Corollaries 1 and 2). Our results on (1·1) are a special case of more general results (Theorems 1′−3′) which refer to a much wider class of groups, and which are, in their turn, a consequence of our main results on the homology of metabelian Lie powers (Theorems 1–3).


2017 ◽  
Vol 82 (3) ◽  
pp. 1066-1079
Author(s):  
DAVID ASPERÓ ◽  
MIGUEL ANGEL MOTA

AbstractMeasuring says that for every sequence ${\left( {{C_\delta }} \right)_{\delta < {\omega _1}}}$ with each ${C_\delta }$ being a closed subset of δ there is a club $C \subseteq {\omega _1}$ such that for every $\delta \in C$, a tail of $C\mathop \cap \nolimits \delta$ is either contained in or disjoint from ${C_\delta }$. We answer a question of Justin Moore by building a forcing extension satisfying measuring together with ${2^{{\aleph _0}}} > {\aleph _2}$. The construction works over any model of ZFC + CH and can be described as a finite support forcing iteration with systems of countable structures as side conditions and with symmetry constraints imposed on its initial segments. One interesting feature of this iteration is that it adds dominating functions $f:{\omega _1} \to {\omega _1}$ mod. countable at each stage.


Author(s):  
J. Gjønnes ◽  
N. Bøe ◽  
K. Gjønnes

Structure information of high precision can be extracted from intentsity details in convergent beam patterns like the one reproduced in Fig 1. From low order reflections for small unit cell crystals,bonding charges, ionicities and atomic parameters can be derived, (Zuo, Spence and O’Keefe, 1988; Zuo, Spence and Høier 1989; Gjønnes, Matsuhata and Taftø, 1989) , but extension to larger unit cell ma seem difficult. The disks must then be reduced in order to avoid overlap calculations will become more complex and intensity features often less distinct Several avenues may be then explored: increased computational effort in order to handle the necessary many-parameter dynamical calculations; use of zone axis intensities at symmetry positions within the CBED disks, as in Figure 2 measurement of integrated intensity across K-line segments. In the last case measurable quantities which are well defined also from a theoretical viewpoint can be related to a two-beam like expression for the intensity profile:With as an effective Fourier potential equated to a gap at the dispersion surface, this intensity can be integrated across the line, with kinematical and dynamical limits proportional to and at low and high thickness respctively (Blackman, 1939).


2020 ◽  
Vol 70 (6) ◽  
pp. 1275-1288
Author(s):  
Abd El-Mohsen Badawy ◽  
Miroslav Haviar ◽  
Miroslav Ploščica

AbstractThe notion of a congruence pair for principal MS-algebras, simpler than the one given by Beazer for K2-algebras [6], is introduced. It is proved that the congruences of the principal MS-algebras L correspond to the MS-congruence pairs on simpler substructures L°° and D(L) of L that were associated to L in [4].An analogy of a well-known Grätzer’s problem [11: Problem 57] formulated for distributive p-algebras, which asks for a characterization of the congruence lattices in terms of the congruence pairs, is presented here for the principal MS-algebras (Problem 1). Unlike a recent solution to such a problem for the principal p-algebras in [2], it is demonstrated here on the class of principal MS-algebras, that a possible solution to the problem, though not very descriptive, can be simple and elegant.As a step to a more descriptive solution of Problem 1, a special case is then considered when a principal MS-algebra L is a perfect extension of its greatest Stone subalgebra LS. It is shown that this is exactly when de Morgan subalgebra L°° of L is a perfect extension of the Boolean algebra B(L). Two examples illustrating when this special case happens and when it does not are presented.


1990 ◽  
Vol 33 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Juan A. Gatica ◽  
Gaston E. Hernandez ◽  
P. Waltman

The boundary value problemis studied with a view to obtaining the existence of positive solutions in C1([0, 1])∩C2((0, 1)). The function f is assumed to be singular in the second variable, with the singularity modeled after the special case f(x, y) = a(x)y−p, p>0.This boundary value problem arises in the search of positive radially symmetric solutions towhere Ω is the open unit ball in ℝN, centered at the origin, Γ is its boundary and |x| is the Euclidean norm of x.


2004 ◽  
Vol 04 (01) ◽  
pp. 63-76 ◽  
Author(s):  
OLIVER JENKINSON

Given a non-empty finite subset A of the natural numbers, let EA denote the set of irrationals x∈[0,1] whose continued fraction digits lie in A. In general, EA is a Cantor set whose Hausdorff dimension dim (EA) is between 0 and 1. It is shown that the set [Formula: see text] intersects [0,1/2] densely. We then describe a method for accurately computing dimensions dim (EA), and employ it to investigate numerically the way in which [Formula: see text] intersects [1/2,1]. These computations tend to support the conjecture, first formulated independently by Hensley, and by Mauldin & Urbański, that [Formula: see text] is dense in [0,1]. In the important special case A={1,2}, we use our computational method to give an accurate approximation of dim (E{1,2}), improving on the one given in [18].


Author(s):  
B. Choudhary

Integral transformations analogous to the Nörlund means have been introduced and investigated by Kuttner, Knopp and Vanderburg(6), (5), (4). It is known that with any regular Nörlund mean (N, p) there is associated a functionregular for |z| < 1, and if we have two Nörlund means (N, p) and (N, r), where (N, pr is regular, while the function is regular for |z| ≤ 1 and different) from zero at z = 1, then q(z) = r(z)p(z) belongs to a regular Nörlund mean (N, q). Concerning Nörlund means Peyerimhoff(7) and Miesner (3) have recently obtained the relation between the convergence fields of the Nörlund means (N, p) and (N, r) on the one hand and the convergence field of the Nörlund mean (N, q) on the other hand.


Sign in / Sign up

Export Citation Format

Share Document