The division ring of fractions of a group ring

Author(s):  
Robert L. Snider
2015 ◽  
Vol 25 (06) ◽  
pp. 1075-1106 ◽  
Author(s):  
Vitor O. Ferreira ◽  
Jairo Z. Gonçalves ◽  
Javier Sánchez

For any Lie algebra L over a field, its universal enveloping algebra U(L) can be embedded in a division ring 𝔇(L) constructed by Lichtman. If U(L) is an Ore domain, 𝔇(L) coincides with its ring of fractions. It is well known that the principal involution of L, x ↦ -x, can be extended to an involution of U(L), and Cimpric proved that this involution can be extended to one on 𝔇(L). For a large class of noncommutative Lie algebras L over a field of characteristic zero, we show that 𝔇(L) contains noncommutative free algebras generated by symmetric elements with respect to (the extension of) the principal involution. This class contains all noncommutative Lie algebras such that U(L) is an Ore domain.


1984 ◽  
Vol 25 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Martin Lorenz

Let G be a finitely generated (f.g.) torsion-free nilpotent group. Then the group algebra k[G] of G over a field k is a Noetherian domain and hence has a classical division ring of fractions, denoted by k(G). Recently, the division algebras k(G) and, somewhat more generally, division algebras generated by f.g. nilpotent groups have been studied in [3] and [5]. These papers are concerned with the question to what extent the division algebra determines the group under consideration. Here we continue the study of the division algebras k(G) and investigate their Gelfand–Kirillov (GK–) transcendence degree.


2020 ◽  
Vol 32 (3) ◽  
pp. 739-772
Author(s):  
Joachim Gräter

AbstractLet D be a division ring of fractions of a crossed product {F[G,\eta,\alpha]}, where F is a skew field and G is a group with Conradian left-order {\leq}. For D we introduce the notion of freeness with respect to {\leq} and show that D is free in this sense if and only if D can canonically be embedded into the endomorphism ring of the right F-vector space {F((G))} of all formal power series in G over F with respect to {\leq}. From this we obtain that all division rings of fractions of {F[G,\eta,\alpha]} which are free with respect to at least one Conradian left-order of G are isomorphic and that they are free with respect to any Conradian left-order of G. Moreover, {F[G,\eta,\alpha]} possesses a division ring of fraction which is free in this sense if and only if the rational closure of {F[G,\eta,\alpha]} in the endomorphism ring of the corresponding right F-vector space {F((G))} is a skew field.


2021 ◽  
Vol 27 (4) ◽  
Author(s):  
Andrei Jaikin-Zapirain

AbstractLet $$E*G$$ E ∗ G be a crossed product of a division ring E and a locally indicable group G. Hughes showed that up to $$E*G$$ E ∗ G -isomorphism, there exists at most one Hughes-free division $$E*G$$ E ∗ G -ring. However, the existence of a Hughes-free division $$E*G$$ E ∗ G -ring $${\mathcal {D}}_{E*G}$$ D E ∗ G for an arbitrary locally indicable group G is still an open question. Nevertheless, $${\mathcal {D}}_{E*G}$$ D E ∗ G exists, for example, if G is amenable or G is bi-orderable. In this paper we study, whether $${\mathcal {D}}_{E*G}$$ D E ∗ G is the universal division ring of fractions in some of these cases. In particular, we show that if G is a residually-(locally indicable and amenable) group, then there exists $${\mathcal {D}}_{E[G]}$$ D E [ G ] and it is universal. In Appendix we give a description of $${\mathcal {D}}_{E[G]}$$ D E [ G ] when G is a RFRS group.


Author(s):  
Gaurav Mittal ◽  
Sunil Kumar ◽  
Shiv Narain ◽  
Sandeep Kumar

2019 ◽  
Vol 31 (3) ◽  
pp. 769-777
Author(s):  
Jairo Z. Gonçalves

Abstract Let k be a field, let {\mathfrak{A}_{1}} be the k-algebra {k[x_{1}^{\pm 1},\dots,x_{s}^{\pm 1}]} of Laurent polynomials in {x_{1},\dots,x_{s}} , and let {\mathfrak{A}_{2}} be the k-algebra {k[x,y]} of polynomials in the commutative indeterminates x and y. Let {\sigma_{1}} be the monomial k-automorphism of {\mathfrak{A}_{1}} given by {A=(a_{i,j})\in GL_{s}(\mathbb{Z})} and {\sigma_{1}(x_{i})=\prod_{j=1}^{s}x_{j}^{a_{i,j}}} , {1\leq i\leq s} , and let {\sigma_{2}\in{\mathrm{Aut}}_{k}(k[x,y])} . Let {D_{i}} , {1\leq i\leq 2} , be the ring of fractions of the skew polynomial ring {\mathfrak{A}_{i}[X;\sigma_{i}]} , and let {D_{i}^{\bullet}} be its multiplicative group. Under a mild restriction for {D_{1}} , and in general for {D_{2}} , we show that {D_{i}^{\bullet}} , {1\leq i\leq 2} , contains a free subgroup. If {i=1} and {s=2} , we show that a noncentral normal subgroup N of {D_{1}^{\bullet}} contains a free subgroup.


1954 ◽  
Vol 60 (3) ◽  
pp. 571 ◽  
Author(s):  
I. N. Herstein
Keyword(s):  

1979 ◽  
Vol 28 ◽  
pp. 53-62 ◽  
Author(s):  
Dragomir Z̆. Djoković ◽  
Jerry Malzan

Sign in / Sign up

Export Citation Format

Share Document