scholarly journals Sterile neutrinos and neutrinoless double beta decay in effective field theory

2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
W. Dekens ◽  
J. de Vries ◽  
K. Fuyuto ◽  
E. Mereghetti ◽  
G. Zhou
2018 ◽  
Vol 2018 (12) ◽  
Author(s):  
V. Cirigliano ◽  
W. Dekens ◽  
J. de Vries ◽  
M. L. Graesser ◽  
E. Mereghetti

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Tong Li ◽  
Xiao-Dong Ma ◽  
Michael A. Schmidt

Abstract In this work we investigate the implication of low-energy precision measurements on the quark-lepton charged currents in general neutrino interactions with sterile neutrinos in effective field theories. The physics in low-energy measurements is described by the low-energy effective field theory extended with sterile neutrinos (LNEFT) defined below the electroweak scale. We also take into account renormalization group running and match the LNEFT onto the Standard Model (SM) effective field theory with sterile neutrinos (SMNEFT) to constrain new physics (NP) above the electroweak scale. The most sensitive low-energy probes are from leptonic decays of pseudoscalar mesons and hadronic tau lepton decays in terms of precise decay branching fractions, the lepton flavor universality and the Cabibbo-Kobayashi-Maskawa (CKM) unitarity. We also consider other constraints including nuclear beta decay. The constraints on charged current operators are generally stronger than the ones for quark-neutrino neutral current operators. We find that the most stringent bounds on the NP scale of lepton-number-conserving and lepton- number-violating operators in SMNEFT are 74 (110) TeV and 9.8 (13) TeV, respectively, for the operators with down (strange) quark.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Patrick D. Bolton ◽  
Frank F. Deppisch ◽  
P.S. Bhupal Dev

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Jordy de Vries ◽  
Herbert K. Dreiner ◽  
Julian Y. Günther ◽  
Zeren Simon Wang ◽  
Guanghui Zhou

Abstract We study the prospects of a displaced-vertex search of sterile neutrinos at the Large Hadron Collider (LHC) in the framework of the neutrino-extended Standard Model Effective Field Theory (νSMEFT). The production and decay of sterile neutrinos can proceed via the standard active-sterile neutrino mixing in the weak current, as well as through higher-dimensional operators arising from decoupled new physics. If sterile neutrinos are long-lived, their decay can lead to displaced vertices which can be reconstructed. We investigate the search sensitivities for the ATLAS/CMS detector, the future far-detector experiments: AL3X, ANUBIS, CODEX-b, FASER, MATHUSLA, and MoEDAL-MAPP, and at the proposed fixed-target experiment SHiP. We study scenarios where sterile neutrinos are predominantly produced via rare charm and bottom mesons decays through minimal mixing and/or dimension-six operators in the νSMEFT Lagrangian. We perform simulations to determine the potential reach of high-luminosity LHC experiments in probing the EFT operators, finding that these experiments are very competitive with other searches.


Author(s):  
S. Gardner ◽  
V. Bernard ◽  
U.G. Meissner ◽  
C. Zhang

Sign in / Sign up

Export Citation Format

Share Document