neutral current
Recently Published Documents


TOTAL DOCUMENTS

1147
(FIVE YEARS 156)

H-INDEX

61
(FIVE YEARS 6)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Peter Athron ◽  
Csaba Balazs ◽  
Tomás E. Gonzalo ◽  
Douglas Jacob ◽  
Farvah Mahmoudi ◽  
...  

Abstract We present a likelihood analysis of the general two Higgs doublet model, using the most important currently measured flavour observables, in view of the anomalies in charged current tree-level and neutral current one-loop rare decays of B mesons in b → cl$$ \overline{\nu} $$ ν ¯ and b → sμ+μ− transitions, respectively. We corroborate that the model explains the latter and it is able to simultaneously fit the experimental values of the R(D) charged current ratio at 1σ, but it can not accommodate the D* charmed meson observables R(D*) and FL(D*). We find that the fitted values for the angular observables in b → sμ+μ− transitions exhibit better agreement with the general two Higgs double model in comparison to the SM. We also make predictions for future collider observables BR(t → ch), BR(h → bs), BR(h → τμ), BR(Bs → τ+τ−), BR(B+ → K+τ+τ−) and the flavour violating decays of the τ lepton, BR(τ → 3μ) and BR(τ → μγ). The model predicts values of BR(t → ch), BR(Bs → τ+τ−) and BR(B+ → K+τ+τ−) that are out of reach of future experiments, but its predictions for BR(h → bs) and BR(h → τμ) are within the future sensitivity of the HL-LHC or the ILC. We also find that the predictions for the τ → 3μ and τ → μγ decays are well within the projected limits of the Belle II experiment. Finally, using the latest measurement of the Fermilab Muon g − 2 Collaboration, we performed a simultaneous fit to ∆aμ constrained by the charged anomalies, finding solutions at the 1σ level. Once the neutral anomalies are included, however, a simultaneous explanation is unfeasible.


2021 ◽  
Vol 6 (7) ◽  
pp. 133-139
Author(s):  
Md. Janibul Alam Soeb ◽  
Md. Shahid Iqbal ◽  
Md. Abu Naser Mojumder ◽  
Muhammad Rashed Al Mamun ◽  
A. S. M. Shahjalal Atik ◽  
...  

The demand for electrical power is rapidly increasing due to the rise of industries in developing countries. Power generation stations are having troubles to strike a balance between demand and generation. In this situation, it is urged that appropriate remedial action be taken. Rising power demand can be met by designing an efficient electric power generation system which will also help lowering the generation cost. It is shown that while high rated electric power generators are connected in parallel the value of neutral current is rising and the cooling temperature is also increased. Here, the goal of this experimental work is to present a new model for designing an efficient power production system for average-load (ranging up to 8000 Amp, 440 V) industries to minimize the demand on centralized interconnected grid. A scheme is proposed with four generators (2500 kVA, 2000 kVA, 2000 kVA and 1250 KVA) in parallel and enough cooling arrangement is provided with minimal cost. The coolant temperature is maintained 61 °C to 61.5 °C and at that time diesel temperature is not more than 38.5 °C. The amount of neutral-current is also optimized (up to 8.5 Amp.) which was more than 12 Amp. At the morning and afternoon, the neutral current is almost constant, but it is bit fluctuating between 7.5 Amp to 8.2 Amp at mid-day. The final outcome shows, the suggested system is efficiently stable with the change of load and generates optimal electricity.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8536
Author(s):  
Hyoun-Su Kim ◽  
Hae-Yeol Min ◽  
J. Geoffrey Chase ◽  
Chul-Hwan Kim

Gas and oil pipelines are widely used to supply customers. They are often laid in parallel with high voltage power lines, sharing right of way. When the pipeline is located near overhead high-voltage power, corrosion caused by induced voltages from AC power lines can occur in utility pipelines. Therefore, the calculation of induced voltage is always required for both interference and maintenance workers as well as pipeline facility safety. For parallel distribution lines, the calculation method for the induced voltage is not suitable due to the excessive error caused by using the screening factors of the neutral current. For a more practical analysis of the induced voltage, a new analysis is needed using the actual neutral current and which also considers the overhead ground conductor and the neutral conductor. This paper analyzed the induced voltage from a parallel distribution system using Carson’s formula and vector analysis. Simulation analysis results are verified by separate Electromagnetic Transient Program (EMTP) simulation.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3254
Author(s):  
Nien-Che Yang ◽  
Yan-Lin Zeng ◽  
Tsai-Hsiang Chen

In this study, the non-dominated sorting genetic algorithm II (NSGA-II) is used to optimize the annual phase arrangement of distribution transformers connected to primary feeders to improve three-phase imbalance and reduce power loss. Based on the data of advanced metering infrastructure (AMI), a quasi-real-time ZIP load model and typical sample distribution systems in Taiwan are constructed. The equivalent circuit models and solution algorithms for typical distribution systems in Taiwan are built using the commercial software package MATLAB. A series of simulations, analyses, comparisons, and explorations is executed. Finally, the quantitative evaluation results for improving the voltage imbalance and reducing the power loss are summarized. For the series of studies, the percentage reductions in (1) total power imbalance TSI, (2) total line loss TLL, (3) average voltage drop AVD, (4) total voltage imbalance factors for zero/negative sequences Td0/Td2, and (5) neutral current of the main transformer ILCO are up to 45.48%, 4.06%, 16.61%, 63.99%, 21.33%, and 88.01%, respectively. The results obtained in this study can be applied for energy saving and can aid the authorities to implement sustainable development policies in Taiwan.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012018
Author(s):  
J Ineead ◽  
S Nishida ◽  
B Asavapibhop ◽  
N Suwonjandee

Abstract The electroweak b → sll (l = e, µ) transition is a flavor-changing neutral current process that mediates through a one-loop penguin diagram. The decay is considered to be a good probe for the New Physics as particles predicted in the beyond Standard Model theories can enter into the loop. The exclusive decay B → K (*) l + l − was first observed by the Belle experiment and it provides many observables such as the branching fraction, CP asymmetry, forward-backward asymmetry, and other angular observables. Recently, the LHCb experiment has reported some clue of a lepton flavor universality violation from the branching fraction ratio of the B → Kµ + µ − and B → Ke + e − decays. In this presentation, we report the status of the B → Kl + l − decay analysis at the Belle II experiment which started the data taking in 2019. We also, present an activity at the Belle II Chulalongkorn University group where we study the B → KJ/ψ decay which has the same topology as the B → Kl + l − .


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Kingman Cheung ◽  
C. J. Ouseph ◽  
TseChun Wang

Abstract We study the impact of non-standard neutrino interactions in the context of a new gauge boson Z′ in neutral-current deep-inelastic scattering performed in ForwArd Search ExpeRiment-ν (FASERν) and in monojet production at the Large Hadron Collider (LHC). We simulate the neutral-current deep-inelastic neutrino-nucleon scattering νN → νN at FASERν in the presence of an additional Z′ boson, and estimate the anticipated sensitivities to the gauge coupling in a wide range of Z′ mass. At the LHC, we study the effect of Z′ on monojet production, which can be enhanced in regions with large missing transverse momenta. We then use the recent results from ATLAS with an integrated luminosity of 139 fb−1 to improve the limits on the gauge coupling of Z′. We interpret such limits on Z′ gauge couplings as bounds on effective non-standard neutrino interactions. We show that the FASERν and the LHC results cover the medium and high energy scales, respectively, and complement one another.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Jihyun Bhom ◽  
Marcin Chrzaszcz ◽  
Farvah Mahmoudi ◽  
Markus T. Prim ◽  
Pat Scott ◽  
...  

AbstractThe search for flavour-changing neutral current effects in B-meson decays is a powerful probe of physics beyond the Standard Model. Deviations from SM behaviour are often quantified by extracting the preferred values of the Wilson coefficients of an operator product expansion. We use the module of the package to perform a simultaneous global fit of the Wilson coefficients $$C_7$$ C 7 , $$C_9$$ C 9 , and $$C_{10}$$ C 10 using a combination of all current data on $$b{\rightarrow }s\mu ^{+}\mu ^{-}$$ b → s μ + μ -  transitions. We further extend previous analyses by accounting for the correlated theoretical uncertainties at each point in the Wilson coefficient parameter space, rather than deriving the uncertainties from a Standard Model calculation. We find that the best fit deviates from the SM value with a significance of 6.6$$\sigma $$ σ . The largest deviation is associated with a vector coupling of muons to b and s quarks.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
◽  
I. Abt ◽  
R. Aggarwal ◽  
V. Aushev ◽  
O. Behnke ◽  
...  

Abstract Collective behaviour of final-state hadrons, and multiparton interactions are studied in high-multiplicity ep scattering at a centre-of-mass energy $$ \sqrt{s} $$ s = 318 GeV with the ZEUS detector at HERA. Two- and four-particle azimuthal correlations, as well as multiplicity, transverse momentum, and pseudorapidity distributions for charged-particle multiplicities Nch ≥ 20 are measured. The dependence of two-particle correlations on the virtuality of the exchanged photon shows a clear transition from photoproduction to neutral current deep inelastic scattering. For the multiplicities studied, neither the measurements in photoproduction processes nor those in neutral current deep inelastic scattering indicate significant collective behaviour of the kind observed in high-multiplicity hadronic collisions at RHIC and the LHC. Comparisons of PYTHIA predictions with the measurements in photoproduction strongly indicate the presence of multiparton interactions from hadronic fluctuations of the exchanged photon.


Author(s):  
Effat Ayoubi ◽  
Mohammad Reza Miveh ◽  
Ali Asghar Ghadimi ◽  
Sajad Bagheri

<span lang="EN-US">Stand-alone low voltage (LV) microgrids supplying small local loads far from the utility grid are becoming an increasingly popular alternative to a total reliance on the centralized utility grid. In most of LV microgrids, three-phase four-wire distribution systems are used to supply both single- and three-phase loads. Unequal distribution of loads can result in voltage unbalance problems. The use of the four-leg inverter is one of the best solutions for providing a neutral current path and compensating unbalanced load conditions in stand-alone LV microgrids. This paper proposes a fast control technique to compensate unbalanced voltage conditions for a four-leg inverter operating in a stand-alone LV microgrid. The suggested technique provides the current controller’s orthogonal component without introducing any additional dynamics or distortions. The major benefits of the recommended per-phase control technique over conventional orthogonal signal generation (OSG) methods are enhanced steady-state and dynamic performances as well as independency to the system parameters. Several simulation results are provided to confirm the superior performance of the suggested methods.</span>


2021 ◽  
Vol 16 (12) ◽  
pp. T12017
Author(s):  
P. Abratenko ◽  
R. An ◽  
J. Anthony ◽  
L. Arellano ◽  
J. Asaadi ◽  
...  

Abstract This article presents the reconstruction of the electromagnetic activity from electrons and photons (showers) used in the MicroBooNE deep learning-based low energy electron search. The reconstruction algorithm uses a combination of traditional and deep learning-based techniques to estimate shower energies. We validate these predictions using two νμ-sourced data samples: charged/neutral current interactions with final state neutral pions and charged current interactions in which the muon stops and decays within the detector producing a Michel electron. Both the neutral pion sample and Michel electron sample demonstrate agreement between data and simulation. Further, the absolute shower energy scale is shown to be consistent with the relevant physical constant of each sample: the neutral pion mass peak and the Michel energy cutoff.


Sign in / Sign up

Export Citation Format

Share Document