hadron collider
Recently Published Documents


TOTAL DOCUMENTS

2277
(FIVE YEARS 602)

H-INDEX

63
(FIVE YEARS 11)

Author(s):  
Stephen Burns Menary ◽  
Darren David Price

Abstract We show that density models describing multiple observables with (i) hard boundaries and (ii) dependence on external parameters may be created using an auto-regressive Gaussian mixture model. The model is designed to capture how observable spectra are deformed by hypothesis variations, and is made more expressive by projecting data onto a configurable latent space. It may be used as a statistical model for scientific discovery in interpreting experimental observations, for example when constraining the parameters of a physical model or tuning simulation parameters according to calibration data. The model may also be sampled for use within a Monte Carlo simulation chain, or used to estimate likelihood ratios for event classification. The method is demonstrated on simulated high-energy particle physics data considering the anomalous electroweak production of a $Z$ boson in association with a dijet system at the Large Hadron Collider, and the accuracy of inference is tested using a realistic toy example. The developed methods are domain agnostic; they may be used within any field to perform simulation or inference where a dataset consisting of many real-valued observables has conditional dependence on external parameters.


Author(s):  
Wolfgang Adam ◽  
Iacopo Vivarelli

The second period of datataking at the Large Hadron Collider (LHC) has provided a large dataset of proton–proton collisions that is unprecedented in terms of its centre-of-mass energy of 13 TeV and integrated luminosity of almost 140 fb[Formula: see text]. These data constitute a formidable laboratory for the search for new particles predicted by models of supersymmetry. The analysis activity is still ongoing, but a host of results on supersymmetry had already been released by the general purpose LHC experiments ATLAS and CMS. In this paper, we provide a map into this remarkable body of research, which spans a multitude of experimental signatures and phenomenological scenarios. In the absence of conclusive evidence for the production of supersymmetric particles we discuss the constraints obtained in the context of various models. We finish with a short outlook on the new opportunities for the next runs that will be provided by the upgrade of detectors and accelerator.


Author(s):  
James Beacham ◽  
Frank Zimmermann

Abstract The long-term prospect of building a hadron collider around the circumference of a great circle of the Moon is sketched. A Circular Collider on the Moon (CCM) of ~11000 km in circumference could reach a proton-proton center-of-mass collision energy of 14 PeV --- a thousand times higher than the Large Hadron Collider at CERN --- optimistically assuming a dipole magnetic field of 20 T. Several aspects of such a project are presented, including siting, construction, availability of necessary materials on the Moon, and powering, as well as a discussion of future studies and further information needed to determine the more concrete feasibility of each. Machine parameters and vacuum requirements are explored, and an injection scheme is delineated. Other unknowns are set down. Due to the strong interest from multiple organizations in establishing a permanent Moon presence, a CCM could be the (next-to-) next-to-next-generation discovery machine and a natural successor to next-generation machines, such as the proposed Future Circular Collider at CERN or a Super Proton-Proton Collider in China, and other future machines, such as a Collider in the Sea, in the Gulf of Mexico. A CCM would serve as an important stepping stone towards a Planck-scale collider sited in our Solar System.


J ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 1-14
Author(s):  
Yuri Sinyukov ◽  
Volodymyr Shapoval

The results on description of direct photon yields, transverse momentum spectra, and flow harmonics, measured in ultrarelativistic heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) for different collision centrality classes, analyzed within the Integrated Hydrokinetic Model (iHKM) are reviewed. The iHKM simulation results, corresponding to the two opposite approaches to the matter evolution treatment at the final stage of the system’s expansion within the model, namely, the chemically equilibrated and the chemically frozen evolution, are compared. The so-called “direct photon puzzle” is addressed, and its possible solution, suggesting the account for additional photon emission at confinement, is considered.


2022 ◽  
Author(s):  
◽  
R. Aaij ◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
B. Adeva ◽  
...  

AbstractMesons comprising a beauty quark and strange quark can oscillate between particle ($${B}_{\mathrm{s}}^{0}$$ B s 0 ) and antiparticle ($${\overline{B}}_{\mathrm{s}}^{0}$$ B ¯ s 0 ) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, Δms. Here we present a measurement of Δms using $${B}_{\mathrm{s}}^{0}\to {D}_{\mathrm{s}}^{-}$$ B s 0 → D s − π+ decays produced in proton–proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be Δms = 17.7683 ± 0.0051 ± 0.0032 ps−1, where the first uncertainty is statistical and the second is systematic. This measurement improves on the current Δms precision by a factor of two. We combine this result with previous LHCb measurements to determine Δms = 17.7656 ± 0.0057 ps−1, which is the legacy measurement of the original LHCb detector.


2022 ◽  
Vol 17 (01) ◽  
pp. C01046
Author(s):  
P. Kopciewicz ◽  
S. Maccolini ◽  
T. Szumlak

Abstract The Vertex Locator (VELO) is a silicon tracking detector in the spectrometer of the Large Hadron Collider beauty (LHCb) experiment. LHCb explores and investigates CP violation phenomena in b- and c- hadron decays and is one of the experiments operating on the Large Hadron Collider (LHC) at CERN. After run 1 and run 2 of LHC data taking (2011–2018), the LHCb detectors are being modernized within the LHCb upgrade I program. The upgrade aims to adjust the spectrometer to readout at full LHC 40 MHz frequency, which requires radical changes to the technologies currently used in LHCb. The hardware trigger is removed, and some of the detectors replaced. The VELO changes its tracking technology and silicon strips are replaced by 55 μm pitch silicon pixels. The readout chip for the VELO upgrade is the VeloPix ASIC. The number of readout channels increases to over 40 million, and the hottest ASIC is expected to produce the output data rate of 15 Gbit/s. New conditions challenge the software and the hardware side of the readout system and put special attention on the detector monitoring. This paper presents the upgraded VELO design and outlines the software aspects of the detector calibration in the upgrade I. An overview of the challenges foreseen for the upgrade II is given.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Sung Mook Lee ◽  
Tanmoy Modak ◽  
Kin-ya Oda ◽  
Tomo Takahashi

AbstractWe study $$R^2$$ R 2 -Higgs inflation in a model with two Higgs doublets in which the Higgs sector of the Standard Model is extended by an additional Higgs doublet, thereby four scalar fields are involved in the inflationary evolutions. We first derive the set of equations required to follow the inflationary dynamics in this two Higgs doublet model, allowing a nonminimal coupling between the Higgs-squared and the Ricci scalar R, as well as the $$R^2$$ R 2 term in the covariant formalism. By numerically solving the system of equations, we find that, in parameter space where a successful $$R^2$$ R 2 -Higgs inflation are realized and consistent with low energy constraints, the inflationary dynamics can be effectively described by a single slow-roll formalism even though four fields are involved in the model. We also argue that the parameter space favored by $$R^2$$ R 2 -Higgs inflation requires nearly degenerate masses for $$m_{\mathsf {H}}$$ m H , $$m_A$$ m A and $$m_{{\mathsf {H}}^{\pm }}$$ m H ± , where $${\mathsf {H}}$$ H , A, and $${\mathsf {H}}^{\pm }$$ H ± are the extra CP even, CP odd, and charged Higgs bosons in the general two Higgs doublet model taking renormalization group evolutions of the parameters into account. Discovery of such heavy scalars at the Large Hadron Collider (LHC) are possible if they are in the sub-TeV mass range. Indirect evidences may also emerge at the LHCb and Belle-II experiments, however, to probe the quasi degenerate mass spectra one would likely require high luminosity LHC or future lepton colliders such as the International Linear Collider and the Future Circular Collider.


2022 ◽  
Vol 17 (01) ◽  
pp. P01002
Author(s):  
L. Polson ◽  
L. Kurchaninov ◽  
M. Lefebvre

Abstract The liquid argon ionization current in a sampling calorimeter cell can be analyzed to determine the energy of detected particles. In practice, experimental artifacts such as pileup and electronic noise make the inference of energy from current a difficult process. The beam intensity of the Large Hadron Collider will be significantly increased during the Phase-II long shut-down of 2025–2027. Signal processing techniques that are used to extract the energy of detected particles in the ATLAS detector will suffer a significant loss in performance under these conditions. This paper compares the presently used optimal filter technique to convolutional neural networks for energy reconstruction in the ATLAS liquid argon hadronic end cap calorimeter. In particular, it is shown that convolutional neural networks trained with an appropriately tuned and novel loss function are able to outperform the optimal filter technique.


2022 ◽  
Vol 17 (01) ◽  
pp. P01013
Author(s):  
Georges Aad ◽  
Brad Abbott ◽  
Dale Charles Abbott ◽  
Adam Abed Abud ◽  
Kira Abeling ◽  
...  

Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb-1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector. Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2. It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.


2022 ◽  
Vol 253 (3367) ◽  
pp. 12
Author(s):  
Matthew Sparkes

Sign in / Sign up

Export Citation Format

Share Document