scholarly journals Cumulants of multiple conserved charges and global conservation laws

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Volodymyr Vovchenko ◽  
Roman V. Poberezhnyuk ◽  
Volker Koch

Abstract We analyze the behavior of cumulants of conserved charges in a subvolume of a thermal system with exact global conservation laws by extending a recently developed subensemble acceptance method (SAM) [1] to multiple conserved charges. Explicit expressions for all diagonal and off-diagonal cumulants up to sixth order that relate them to the grand canonical susceptibilities are obtained. The derivation is presented for an arbitrary equation of state with an arbitrary number of different conserved charges. The global conservation effects cancel out in any ratio of two second order cumulants, in any ratio of two third order cumulants, as well as in a ratio of strongly intensive measures Σ and ∆ involving any two conserved charges, making all these quantities particularly suitable for theory-to-experiment comparisons in heavy-ion collisions. We also show that the same cancellation occurs in correlators of a conserved charge, like the electric charge, with any non-conserved quantity such as net proton or net kaon number. The main results of the SAM are illustrated in the framework of the hadron resonance gas model. We also elucidate how net-proton and net-Λ fluctuations are affected by conservation of electric charge and strangeness in addition to baryon number.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
D. K. Mishra ◽  
P. Garg ◽  
P. K. Netrakanti ◽  
L. M. Pant ◽  
A. K. Mohanty

We present a subset of experimental results on charge fluctuation from the heavy-ion collisions to search for phase transition and location of critical point in the QCD phase diagram. Measurements from the heavy-ion experiments at the SPS and RHIC energies observe that total charge fluctuations increase from central to peripheral collisions. The net-charge fluctuations in terms of dynamical fluctuation measure ν(+-,dyn) are studied as a function of collision energy (sNN) and centrality of the collisions. The product of ν(+-,dyn) and 〈Nch〉 shows a monotonic decrease with collision energies, which indicates that at LHC energy the fluctuations have their origin in the QGP phase. The fluctuations in terms of higher moments of net-proton, net-electric charge, and net-kaon have been measured for various sNN. Deviations are observed in both Sσ and κσ2 for net-proton multiplicity distributions from the Skellam and hadron resonance gas model for sNN<39 GeV. Higher moment results of the net-electric charge and net-kaon do not observe any significant nonmonotonic behavior as a function of collision energy. We also discuss the extraction of the freeze-out parameters using particle ratios and experimentally measured higher moments of net-charge fluctuations. The extracted freeze-out parameters from experimentally measured moments and lattice calculations are found to be in agreement with the results obtained from the fit of particle ratios to the thermal model calculations.


2011 ◽  
Vol 56 (7) ◽  
pp. 359-361 ◽  
Author(s):  
S. S. Gershtein ◽  
A. A. Logunov ◽  
M. A. Mestvirishvili

Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Jan A. Fotakis ◽  
Moritz Greif ◽  
Gabriel S. Denicol ◽  
Carsten Greiner

We discuss the diffusion currents occurring in a dilute system and show that the charge currents do not only depend on gradients in the corresponding charge density, but also on the other conserved charges in the system—the diffusion currents are therefore coupled. Gradients in one charge thus generate dissipative currents in a different charge. In this approach, we model the Navier-Stokes term of the generated currents to consist of a diffusion coefficient matrix, in which the diagonal entries are the usual diffusion coefficients and the off-diagonal entries correspond to the coupling of different diffusion currents. We evaluate the complete diffusion matrix for a specific hadron gas and for a simplified quark-gluon gas, including baryon, electric and strangeness charge. Our findings are that the off-diagonal entries can range within the same magnitude as the diagonal ones.


2014 ◽  
Vol 535 ◽  
pp. 012030 ◽  
Author(s):  
S Borsanyi ◽  
Z Fodor ◽  
S D Katz ◽  
S Krieg ◽  
C Ratti ◽  
...  

Author(s):  
Stanisław Sołtan ◽  
Mateusz Fra̧czak ◽  
Wolfgang Belzig ◽  
Adam Bednorz

AbstractWe discuss quantum mechanical detection models in the weak limit in the context of conservation laws of physical quantities. In particular, we analyze what kind of system–detector interaction can preserve the global conservation or the related symmetry, and how the final measurement on the detector affects the measured observable of the systems and its presumed conservation. It turns out that the order of noncommuting measurements results in observable differences on the level of third-order correlations functions.


Sign in / Sign up

Export Citation Format

Share Document