scholarly journals Hidden photon and axion dark matter from symmetry breaking

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Kazunori Nakayama ◽  
Wen Yin

Abstract A light hidden photon or axion-like particle is a good dark matter candidate and they are often associated with the spontaneous breaking of dark global or gauged U(1) symmetry. We consider the dark Higgs dynamics around the phase transition in detail taking account of the portal coupling between the dark Higgs and the Standard Model Higgs as well as various thermal effects. We show that the (would-be) Nambu-Goldstone bosons are efficiently produced via a parametric resonance with the resonance parameter q ∼ 1 at the hidden symmetry breaking. In the simplest setup, which predicts a second order phase transition, this can explain the dark matter abundance for the axion or hidden photon as light as sub eV. Even lighter mass, as predicted by the QCD axion model, can be consistent with dark matter abundance in the case of first order phase transition, in which case the gravitational wave signals may be detectable by future experiments such as LISA and DECIGO.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Danny Marfatia ◽  
Po-Yan Tseng

Abstract We study the stochastic background of gravitational waves which accompany the sudden freeze-out of dark matter triggered by a cosmological first order phase transition that endows dark matter with mass. We consider models that produce the measured dark matter relic abundance via (1) bubble filtering, and (2) inflation and reheating, and show that gravitational waves from these mechanisms are detectable at future interferometers.


2010 ◽  
Vol 20 (02) ◽  
pp. 287-295 ◽  
Author(s):  
SALVADOR A. SARTARELLI ◽  
LESZEK SZYBISZ ◽  
IGNACIO URRUTIA

A density functional formalism is applied to investigate the wetting behavior of Ne confined in slits composed of two parallel solid identical alkaline walls with increasing attractive strength leading to a variety of wetting situations. The study is performed over the complete range of temperature spanned from the triple point Tt up to the critical one Tc of Ne. Attention is paid to the slit's width. It was found that in the case of weaker substrates for temperatures below a certain critical Tsb the density profiles corresponding to the lowest free energy are asymmetric, i.e. exhibit a spontaneous breaking of symmetry. For T > Tsb the phenomenon of symmetry breaking disappears leading to a first-order phase transition.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
M. Ahmadvand

Abstract In this paper, we propose a bubble filtering-out mechanism for an asymmetric dark matter scenario during the Peccei-Quinn (PQ) phase transition. Based on a QCD axion model, extended by extra chiral neutrinos, we show that the PQ phase transition can be first order in the parameter space of the model and regarding the PQ symmetry breaking scale, the mechanism can generate PeV-scale heavy neutrinos as a dark matter candidate. Considering a CP-violating source, during the phase transition, discriminating between the neutrino and antineutrino number density, we find the observed dark matter relic abundance, such that the setup can be applied to the first order phase transition with different strengths. We then calculate effective couplings of the QCD axion addressing the strong CP problem within the model. We also study the energy density spectrum of gravitational waves generated from the first order phase transition and show that the signals can be detected by future ground-based detectors such as Einstein Telescope. In particular, for a visible heavy axion case of the model, it is shown that gravitational waves can be probed by DECIGO and BBO interferometers. Furthermore, we discuss the dark matter-standard model neutrino annihilation process as a source for the creation of PeV-scale neutrinos.


Sign in / Sign up

Export Citation Format

Share Document