hidden symmetry
Recently Published Documents


TOTAL DOCUMENTS

268
(FIVE YEARS 46)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Michele Lenzi ◽  
Carlos F. Sopuerta
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3298
Author(s):  
Gabriel Gavriluț ◽  
Liliana Topliceanu ◽  
Manuela Gîrțu ◽  
Ana Maria Rotundu ◽  
Stefan Andrei Irimiciuc ◽  
...  

In the present paper, nonlinear behaviors of complex system dynamics from a multifractal perspective of motion are analyzed. In the framework of scale relativity theory, by analyzing the dynamics of complex system entities based on continuous but non-differentiable curves (multifractal curves), both the Schrödinger and Madelung scenarios on the holographic implementations of dynamics are functional and complementary. In the Madelung scenario, the holographic implementation of dynamics (i.e., free of any external or internal constraints) has some important consequences explicated by means of various operational procedures. The selected procedures involve synchronous modes through SL (2R) transformation group based on a hidden symmetry, coherence domains through Riemann manifold embedded with a Poincaré metric based on a parallel transport of direction (in a Levi Civita sense). Other procedures used here relate to the stationary-non-stationary dynamics transition through harmonic mapping from the usual space to the hyperbolic one manifested as cellular and channel type self-structuring. Finally, the Madelung scenario on the holographic implementations of dynamics are discussed with respect to laser-produced plasma dynamics.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Jibril Ben Achour ◽  
Etera R. Livine

Abstract We show that the Schwarzschild-(A)dS black hole mechanics possesses a hidden symmetry under the three-dimensional Poincaré group. This symmetry shows up after having gauge-fixed the diffeomorphism invariance in the symmetry-reduced homogeneous Einstein-Λ model and stands as a physical symmetry of the system. It dictates the geometry both in the black hole interior and exterior regions, as well as beyond the cosmological horizon in the Schwarzschild-dS case. It follows that one can associate a set of non-trivial conserved charges to the Schwarzschild-(A)dS black hole which act in each causally disconnected regions. In T-region, they act on fields living on spacelike hypersurface of constant time, while in R-regions, they act on time-like hypersurface of constant radius. We find that while the expression of the charges depend explicitly on the location of the hypersurface, the charge algebra remains the same at any radius in R-regions (or time in T-regions). Finally, the analysis of the Casimirs of the charge algebra reveals a new solution-generating map. The $$ \mathfrak{sl}\left(2,\mathrm{\mathbb{R}}\right) $$ sl 2 ℝ Casimir is shown to generate a one-parameter family of deformation of the black hole geometry labelled by the cosmological constant. This gives rise to a new conformal bridge allowing one to continuously deform the Schwarzschild-AdS geometry to the Schwarzschild and the Schwarzschild-dS solutions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Petrus H. R. dos Anjos ◽  
Márcio S. Gomes-Filho ◽  
Washington S. Alves ◽  
David L. Azevedo ◽  
Fernando A. Oliveira

Growth in crystals can be usually described by field equations such as the Kardar-Parisi-Zhang (KPZ) equation. While the crystalline structure can be characterized by Euclidean geometry with its peculiar symmetries, the growth dynamics creates a fractal structure at the interface of a crystal and its growth medium, which in turn determines the growth. Recent work by Gomes-Filho et al. (Results in Physics, 104,435 (2021)) associated the fractal dimension of the interface with the growth exponents for KPZ and provides explicit values for them. In this work, we discuss how the fluctuations and the responses to it are associated with this fractal geometry and the new hidden symmetry associated with the universality of the exponents.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Kazunori Nakayama ◽  
Wen Yin

Abstract A light hidden photon or axion-like particle is a good dark matter candidate and they are often associated with the spontaneous breaking of dark global or gauged U(1) symmetry. We consider the dark Higgs dynamics around the phase transition in detail taking account of the portal coupling between the dark Higgs and the Standard Model Higgs as well as various thermal effects. We show that the (would-be) Nambu-Goldstone bosons are efficiently produced via a parametric resonance with the resonance parameter q ∼ 1 at the hidden symmetry breaking. In the simplest setup, which predicts a second order phase transition, this can explain the dark matter abundance for the axion or hidden photon as light as sub eV. Even lighter mass, as predicted by the QCD axion model, can be consistent with dark matter abundance in the case of first order phase transition, in which case the gravitational wave signals may be detectable by future experiments such as LISA and DECIGO.


2021 ◽  
Vol 127 (10) ◽  
Author(s):  
Panagiotis Charalambous ◽  
Sergei Dubovsky ◽  
Mikhail M. Ivanov
Keyword(s):  

2021 ◽  
Author(s):  
Xilin Lu ◽  
Zi-Min Li ◽  
Vladimir V. Mangazeev ◽  
Murray T. Batchelor

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1546
Author(s):  
Ashot S. Gevorkyan ◽  
Alexander V. Bogdanov ◽  
Vladimir V. Mareev

Evolution of a self-consistent joint system (JS), i.e., a quantum system (QS) + thermal bath (TB), is considered within the framework of the Langevin–Schrödinger (L-Sch) type equation. As a tested QS, we considered two linearly coupled quantum oscillators that interact with TB. The influence of TB on QS is described by the white noise type autocorrelation function. Using the reference differential equation, the original L-Sch equation is reduced to an autonomous form on a random space–time continuum, which reflects the fact of the existence of a hidden symmetry of JS. It is proven that, as a result of JS relaxation, a two-dimensional quantized small environment is formed, which is an integral part of QS. The possibility of constructing quantum thermodynamics from the first principles of non-Hermitian quantum mechanics without using any additional axioms has been proven. A numerical algorithm has been developed for modeling various properties and parameters of the QS and its environment.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Gonçalo Castro ◽  
Leonardo Gualtieri ◽  
Paolo Pani

Sign in / Sign up

Export Citation Format

Share Document