SPONTANEOUS SYMMETRY BREAKING AND FIRST-ORDER PHASE TRANSITIONS OF ADSORBED FLUIDS

2010 ◽  
Vol 20 (02) ◽  
pp. 287-295 ◽  
Author(s):  
SALVADOR A. SARTARELLI ◽  
LESZEK SZYBISZ ◽  
IGNACIO URRUTIA

A density functional formalism is applied to investigate the wetting behavior of Ne confined in slits composed of two parallel solid identical alkaline walls with increasing attractive strength leading to a variety of wetting situations. The study is performed over the complete range of temperature spanned from the triple point Tt up to the critical one Tc of Ne. Attention is paid to the slit's width. It was found that in the case of weaker substrates for temperatures below a certain critical Tsb the density profiles corresponding to the lowest free energy are asymmetric, i.e. exhibit a spontaneous breaking of symmetry. For T > Tsb the phenomenon of symmetry breaking disappears leading to a first-order phase transition.

2013 ◽  
Vol 547 ◽  
pp. 139-144
Author(s):  
Lye Hock Ong ◽  
A.M. Alrub ◽  
Khian Hooi Chew

Landau-Ginzburg free energy expression with the normalized coefficients is used to elucidate the phase transition properties of strained ferroelectric films. In particular, we investigate the need to include higher order free energy terms for epitaxial strained BaTiO3 thin films. Our study reveals that the inclusion of eighth-order expression into the free energy is crucial in determining the phase transition of highly-strained BaTiO3 epitaxial films normally grown on thick cubic substrates. The phase transition is found to be second order but the unstrained film undergoes the first order phase transition. On the order hand, the calculation based on the usual sixth-order Landau-Ginzburg expression show that the films have no phase transition, which is contrary to the experimental observations.


2020 ◽  
Vol 102 (13) ◽  
Author(s):  
B. P. Alho ◽  
P. O. Ribeiro ◽  
P. J. von Ranke ◽  
F. Guillou ◽  
Y. Mudryk ◽  
...  

1998 ◽  
Vol 05 (05) ◽  
pp. 983-988 ◽  
Author(s):  
P. M. Marcus

First-principles ground-state total-energy calculations show that tetragonal crystals generally have two structures at which the energy is a minimum, which are appropriately called tetragonal phases in equilibrium. The calculations also show that a small isotropic two-dimensional (epitaxial) strain in the basal plane of a tetragonal phase produces a first-order phase transition to another tetragonal phase, By defining and calculating a special free energy for the states produced by epitaxial strain, the stability limits of each phase and the occurrence of a first-order phase transition between them are clearly demonstrated. Epitaxially strained states and the epitaxial free energy are calculated for vanadium. The epitaxial free energy as a function of the epitaxial stress for these strained states is shown to be similar to free-energy curves calculated for other first-order phase transitions which have analytic descriptions.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 733 ◽  
Author(s):  
Eibun Senaha

Symmetries at finite temperature are of great importance to understand dynamics of spontaneous symmetry breaking phenomena, especially phase transitions in early Universe. Some symmetries such as the electroweak symmetry can be restored in hot environment. However, it is a nontrivial question that the phase transition occurs via first or second order, or even smooth crossover, which strongly depends on underlying physics. If it is first order, gravitational waves can be generated, providing a detectable signal of this epoch. Moreover, the baryon asymmetry of the Universe can also arise under some conditions. In this article, the electroweak phase transition is reviewed, focusing particularly on the case of the first-order phase transition. Much attention is paid to multi-step phase transitions in which additional symmetry breaking such as a spontaneous Z 2 breaking plays a pivotal role in broadening the possibility of the first-order electroweak phase transition. On the technical side, we review thermal resummation that mitigates a bad infrared behavior related to the symmetry restoration. In addition, gauge and scheme dependences of perturbative calculations are also briefly discussed.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Kazunori Nakayama ◽  
Wen Yin

Abstract A light hidden photon or axion-like particle is a good dark matter candidate and they are often associated with the spontaneous breaking of dark global or gauged U(1) symmetry. We consider the dark Higgs dynamics around the phase transition in detail taking account of the portal coupling between the dark Higgs and the Standard Model Higgs as well as various thermal effects. We show that the (would-be) Nambu-Goldstone bosons are efficiently produced via a parametric resonance with the resonance parameter q ∼ 1 at the hidden symmetry breaking. In the simplest setup, which predicts a second order phase transition, this can explain the dark matter abundance for the axion or hidden photon as light as sub eV. Even lighter mass, as predicted by the QCD axion model, can be consistent with dark matter abundance in the case of first order phase transition, in which case the gravitational wave signals may be detectable by future experiments such as LISA and DECIGO.


Sign in / Sign up

Export Citation Format

Share Document